NI 43-101 PRELIMINARY ECONOMIC ASSESSMENT OF THE PLANALTO COPPER - GOLD PROJECT, BRAZIL

Prepared for Lara Exploration Ltd

Effective Date: 15 October, 2025 Issue Date: 14 November, 2025

Prepared by Qualified Persons

Martin Pittuck, MIMMM(QMR) CEng FGS, Corporate Consultant (Resource Geology)
Leonardo de Freitas Leite, MSc, FAusIMM (CP), Principal Consultant (Mining Engineering)
Liam MacNamara PhD, ACSM, MIMMM, Principal Consultant (Mineral Processing)
Jamie Spiers, CEng MIMMM, Principal Consultant (Tailings Engineering)
David Carruth, CEng MICE IntPE, Principal Consultant (Water Engineering)
Colin Chapman, CEng MIMMM, Principal Consultant (Infrastructure)
Thiago Toussaint MSc, MBA, MAusIMM CP(Env), Principal Consultant (Geoenvironmental)

Project Number: UK32689

SRK Consulting (UK) Limited

NI 43-101 PRELIMINARY ECONOMIC ASSESSMENT OF THE PLANALTO COPPER -GOLD PROJECT, BRAZIL

Issuer:

Lara Exploration Ltd

Suite 501 - 543 Granville Street Vancouver, British Columbia V6C 1X8 Canada

Effective Date: 15 October, 2025 Issue Date: 14 November, 2025

Project Number: UK32689

Technical Report Author: **Qualified Persons**

Employees of SRK Consulting (UK) Limited

5th Floor Churchill House 17 Churchill Way Cardiff, CF10 2HH Wales, United Kingdom

Employees of SRK Consultores do Brasil Ltda.

Rua Gonçalves Dias, 89 - 10th Andar - Edifício Delacroix Funcionários Belo Horizonte, MG, Brazil 30140-090 +55 31 3426 6566

Table of Contents

ITEN	И1. SU	UMMARY	1	
1.1	Introd	luction	1	
1.2	Settin	ıg	1	
1.3	Geolo	ogy, Mineralisation and Deposit Type	2	
1.4	Explo	ration and Drilling	2	
1.5	1.5 Mineral Processing and Metallurgical Testing			
1.6				
1.7	.7 Mining Operations			
1.8		essing and Recovery Operations		
1.9		gs Disposal		
1.10	-	ct Infrastructure and Logistics		
1.11		r Management		
1.12		onment, Permitting and Social Consideration		
1.13		ninary Economic Assessment		
1.14		lusions		
1.15		mmendations		
ITEN	И 2. IN	ITRODUCTION	12	
2.1		s of Reference		
2.2		nation Sources		
2.3		onal Inspection		
2.4		tive Date		
ITE		ELIANCE ON OTHER EXPERTS		
3.1	Legal	Title	14	
ITE	И 4. PF	ROPERTY DESCRIPTION AND LOCATION	15	
4.1	Locati	ion	15	
4.2	Land	Access and Surface Rights	17	
	4.2.1	General	17	
	4.2.2	Project Specific	18	
4.3	Miner	al Tenement Rights	18	
	4.3.1	General	18	
	4.3.2	Project Specific Ownership and Status	19	
4.4	Enviro	onmental Approvals	23	
	4.4.1	General	23	
	4.4.2	Project Specific Status	23	
4.5	Mining	g Licence Application Status	24	
4.6	Trans	saction Terms and Royalties	25	
	4.6.1	General	25	
	4.6.2	BAIP Option	25	
	4.6.3	Tariana Option	25	
	4.6.4	Zaspir Option	26	
	4.6.5	Atlantica Option	26	
4.7	Enviro	onmental and Social Liabilities	26	
ITEN	M 5. A(CCESSIBILITY, CLIMATE, LOCAL RESOURCES,		
		IFRASTRUCTURE AND PHYSIOGRAPHY	28	
5.1		ography		
5.2	•	ssibility		
5.3		Population Centres		

5.4	Climate	9	30
	5.4.1	Regional	30
	5.4.2	Project Specific	30
	5.4.3	Climate Change	32
5.5	Hydrol	ogy	32
	5.5.1	Regional	32
	5.5.2	Project Scale	32
5.6	Infrastr	ucture Setting	35
	5.6.1	Road, Rail, Port	35
	5.6.2	Power and Water	35
ITEN	/1 6. HIS	STORY	36
6.1	Historio	cal Exploration	36
	6.1.1	Anglo American and Atlantica	36
6.2	Previou	us Mineral Resource Estimates	37
ITEN	/17. GE	OLOGICAL SETTING AND MINERALISATION	38
7.1	Region	nal Geology	38
7.2	_	Geology	
7.3	Deposi	it Geology and Mineralisation	40
	7.3.1	Planalto Granite Complex	41
	7.3.2	Metasomatic Alteration	41
	7.3.3	Mineralisation	42
	7.3.4	Petrography	43
ITEN	И8. DE	POSIT TYPES	46
ITEN	И9. EX	PLORATION	47
9.1	Introdu	ction	47
9.2	Early E	xploration	47
ITEN	/ 10. DR	ILLING	48
10.1	Introdu	ction	48
10.2		cal Drilling	
	10.2.1	Homestead	
	10.2.2	Atlantica	48
10.3	Drilling	by Lara Exploration and its Partners	49
	10.3.1	Lara Early Drilling	49
	10.3.2	Capstone Joint Venture	49
10.4	Collar I	Position and Downhole Survey	50
10.5	Core T	ransport and Storage	51
10.6	Core C	Prientation	51
10.7		Recovery	
10.8		ogging	
ITEN	/I 11. SA	MPLE PREPARATION, ANALYSES AND SECURITY	52
11.1	Sampli	ng, Handling, Security and Preparation	52
11.2		tory Sample Preparation and Analysis	
	11.2.1	Laboratories Used	
	11.2.2	Assay Methodologies	
11.3	-	y Determination	
11.4	-	Assurance / Quality Control Programmes	
	11.4.1	Blank Material	
	11 4 2	Certified Reference Materials	55

	11.4.3	Duplicate Samples	56	
	11.4.4	Assay QAQC – SRK Comments	57	
ITEN	/I 12. DAT	A VERIFICATION	58	
12.1	Introduct	ion	58	
12.2	Twin Drillhole Verification			
12.3	Verifications by GE21			
12.4	SRK Site Visits			
12.5	Maintenance of Records			
12.6	Qualified	l Person's Opinion	59	
ITEN	/ 13. MIN	ERAL PROCESSING AND METALLURGICAL TESTING	61	
13.1	Summar	y of Available Information	61	
13.2	Prelimina	ary Testwork (Homestead)	61	
	13.2.1	Sample Selection	62	
	13.2.2	Mineralogy	63	
	13.2.3	Comminution	63	
	13.2.4	Flotation	63	
	13.2.5	Gravity Concentration	66	
	13.2.6	Dewatering	67	
13.3	Cupuzei	ro Testwork	67	
	13.3.1	Sample Selection	67	
	13.3.2	Mineralogy	67	
	13.3.3	Comminution	68	
	13.3.4	Flotation	68	
	13.3.5	Dewatering		
13.4	Summar	y of Testwork Results		
13.5		, nendations for Additional Metallurgical Testwork		
	13.5.1	Sample Selection		
	13.5.2	Testwork	73	
	13.5.3	Alternative Flowsheets	75	
13.6	Risks As	sociated with Metallurgical Testwork		
ITEN		ERAL RESOURCE ESTIMATE		
14.1		ion		
14.2		on Domain Modelling		
	14.2.1	SRK Comment		
14.3		nd Density Estimation		
	14.3.1	SRK Comment		
14.4		ation		
	14.4.1	Mineral Resource Reporting		
	14.4.2	SRK Comment		
14.5		on Potential		
14.0	14.5.1	Oxide Mineralisation		
	14.5.2	Other Copper Targets		
14.6		mments		
14.7		nendations		
17.1	14.7.1	Infill Pushback 1&2		
	14.7.2	Silica Cap Extension		
	14.7.2	Atlantica Exploration		
	14.7.4	Block Model Considerations		
	14.7.4	Other Data Considerations		
	17.7.0	Outor Data Considerations		

ITEM	l 15.	MINERAL RESERVE ESTIMATE	84
15.1	Mir	neral Reserve Statement	84
ITEM	l 16.	MINING METHODS	85
16.1	Mir	ne Planning	85
	16.1.1	Pit Optimisation	
	16.1.2	·	
	16.1.3	,	
	16.1.4	Mine Equipment	97
	16.1.5	SRK Comments	99
	16.1.6	Recommendations	99
16.2	Ge	otechnical Considerations	99
	16.2.1	Introduction	99
	16.2.2	Existing Data	100
	16.2.3	Pit Slope Review	100
	16.2.4	Project Scale Geological Setting	102
	16.2.5	Geotechnical Conditions	102
	16.2.6	Geotechnical Considerations	107
	16.2.7	Recommendations	108
ITEM	1 17.	RECOVERY METHODS	109
17.1		oduction	
17.2		cess Description	
17.3		wsheet	
17.4	Equ	uipment Selection	113
	17.4.1	Crushing and Grinding	113
	17.4.2	Flotation	114
	17.4.3	Dewatering	115
	17.4.4	Water Treatment	115
17.5	Equ	uipment Selection	116
17.6	Ris	ks Associated with Recovery Methods	116
17.7		mments to the Mass Balance and Predicted Performance	
17.8		A Base Case Plant Performance	
ITEM	l 18.	PROJECT INFRASTRUCTURE	119
18.1	Intr	oduction	119
18.2	Pro	ject Access Road	119
18.3	Tai	lings Storage Facility	121
	18.3.1	Background	
	18.3.2	,	
	18.3.3	3	
	18.3.4	Key Drivers	123
	18.3.5	Tailings Dewatering Options Assessment	124
	18.3.6	Volumetric Modelling and Site Selection	126
	18.3.7	Alternatives Trade Off	133
	18.3.8	Material Take Offs and Cost Estimation	134
	18.3.9	TSF Capital and Operating Cost Estimates	136
	18.3.1	0 Risks and Opportunities	137
18.4	Wa	ter Management and Supply	
	18.4.1	Overview	
	18.4.2	Water Supply	140

	18.4.3	Water Balance	141		
	18.4.4	Water Management Structures	141		
	18.4.5	Estimated Costs	142		
	18.4.6 Risks and Opportunities				
	18.4.7	Recommendations			
18.5	Site Infra	astructure Requirements	144		
	18.5.1	Overview	144		
	18.5.2	Internal Roads, Civil works & Earthworks	144		
	18.5.3	Administrative & General Facilities	144		
	18.5.4	Mining Contractor Yard	148		
	18.5.5	Explosives Storage / Emulsion Yard	148		
	18.5.6	Plant Support Infrastructure	148		
	18.5.7	Site Wide Services / Utilities Reticulation	149		
	18.5.8	Estimated Costs	149		
	18.5.9	Interpretation & Conclusions / Forward Work Plan	150		
18.6	Power S	upply	150		
	18.6.1	Strategy			
	18.6.2	Regional Infrastructure & National Grid	151		
	18.6.3	Power Demand	151		
	18.6.4	Planalto 138 kV Grid Connection – Option 1	151		
	18.6.5	Planalto 138 kV Grid Connection – Option 2	152		
	18.6.6	Alternative Connection	152		
	18.6.7	Estimated Costs	153		
	18.6.8	Interpretation & Conclusions / Forward Work Plan	153		
18.7	Logistics)	154		
	18.7.1	Strategy	154		
	18.7.2	Road Haulage	154		
	18.7.3	Port	155		
	18.7.4	Shipping	155		
	18.7.5	Logistics Cost Summary	155		
	18.7.6	Interpretation & Conclusions / Forward Work Plan	156		
ITEN	/ 19. MAF	RKET STUDIES AND CONTRACTS	157		
19.1		ontracts			
19.2		Studies			
19.3		dity Price Forecasts			
ITEN		IRONMENTAL, SOCIAL AND GOVERNANCE			
20.1		tion			
	20.1.1	Project Setting			
	20.1.2	Land Use			
	20.1.3	Protected Areas			
20.2		h to Environmental and Social Management			
	20.2.1	Status of Assessment and Studies			
	20.2.2	Stakeholder Engagement			
20.3	_	ironmental and Social Issues			
	20.3.1	Potential Impacts on Conservation Areas and Biodiversity			
	20.3.2	Geochemistry			
		Potential Impacts for Downstream Water Users			
	20.3.3	Folential impacts for Downstream water Osers	100		

20.4	Mine Closure Concepts		
20.5	Conclusions and Recommendations	168	
ITEM	21. CAPITAL AND OPERATING COSTS	170	
21.1	Project Capital Expenditure Estimates	170	
2	21.1.1 Basis of Estimate		
21.2	Sustaining Capital Expenditure	171	
21.3	Operating Cost Estimates	173	
ITEM	22. ECONOMIC ANALYSIS	176	
22.1	Introduction	176	
22.2	Project Schedule and Production		
22.3	Metal Prices and Commercial Terms	177	
22.4	Taxes and Royalties	178	
22.5	Capital Expenditure and Operating Costs	178	
22.6	Financial Model Results	178	
22.7	Sensitivity Analysis	183	
22.8	Conclusion	185	
ITEM	23. ADJACENT PROPERTIES	186	
	24. OTHER RELEVANT DATA AND INFORMATION		
ITEM	25. INTERPRETATION AND CONCLUSIONS	188	
25.1	Mineral Tenure, Surface Rights, Royalties and Agreements	188	
25.2	Drilling and Analytical Data		
25.3	Geology and Mineral Resource		
25.4	Mining Plan	189	
25.5	Metallurgical Testwork and Processing	190	
25.6	Tailings Management	190	
25.7	Surface Water Management	191	
25.8	Infrastructure and Logistics	191	
25.9	Environmental, Permitting and Social Considerations		
25.10	Markets and Contracts	191	
25.11	Cost Estimates		
25.12	Economic Analysis		
25.13	Risks		
25.14	Opportunities		
ITEM	26. RECOMMENDATIONS	194	
ITEM	27. REFERENCES	195	
ITEM	28. DATE AND SIGNATURE		

List of Tables

Table 1-1:	Planalto PEA Financial Highlights	
Table 1-2:	NPV and IRR Sensitivity to Specific Commodity Prices	7
Table 1-3:	NPV Sensitivity to Discount Rate	
Table 4-1:	PML Mineral Licence summary	
Table 5-1:	Summary of Temperature and Relative Humidity at Canaã dos Carajás	31
Table 5-2:	Summary of Precipitation at Canaã dos Carajás	
Table 5-3:	Return Period (years) Precipitation Depths (mm) at Fazenda Surubim (Adapt ALB, 2025)	ted from
Table 10-1:	Summary of Atlantico Historical Drilling Results	
Table 11-1:	Laboratories and Methods used by PML	
Table 11-2:	CRM Sample: Summary of Results	55
Table 12-1:	GE21 Check assay results for samples in drillhole PLAN-22-008 (Source GE2	1. 2024)
Table 13-1:	Super-panner gold concentration	66
Table 13-2:	Homestead Locked Cycle Results	
Table 13-3:	Cupuzeiro Locked Cycle Results	
Table 14-1:	Planalto Project Mineral Resource Statement, 03 July 2024*	
Table 16-1:	Pit Optimization Parameters (Lara, 2025)	
Table 16-2:	Pit Optimization Results (Lara, 2025)	
Table 16-3:	Mine Schedule (Lara, 2025)	
Table 16-4:	Main equipment (source: Lara)	
Table 16-5:	Ancillary equipment (source: Lara)	98
Table 16-6:	PEA slope design criteria (GE21 July 2024)	101
Table 17-1:	Major Process Equipment Suppliers	
Table 17-2:	Consensum Production Plan	
Table 17-3:	Base Case Processing Parameters	117
Table 18-1:	Key metrics for the historical tailings dams (ALB Engenharia, 2025)	122
Table 18-2:	Planalto PEA – Design Criteria	123
Table 18-3:	Tailings Storage Volumetric Comparison	129
Table 18-4:	TSF Options Constraints High-level Analysis	133
Table 18-5:	PEA Unit Rates: Earthworks and Major Equipment Items	134
Table 18-6:	Planalto TSF Options: Capital, Operating, Closure Expenditure Summary	136
Table 18-7:	Water Management Cost Estimate	142
Table 18-8:	Direct Capital Expenditure: Infrastructure (accuracy +50/-30%)	149
Table 18-9:	Estimated Power Demand	151
Table 18-10:	Direct Capital Expenditure: Power Supply (5.6 BRL:1 USD)	153
Table 18-11:	Assumed Logistics costs: Bulk / Container	155
Table 19-1:	PEA Commodity Price Assumptions	159
Table 21-1:	Project Capital Expenditure Estimate Summary (+50/-30% accuracy)	170
Table 21-2:	Basis of Direct Cost Estimate (Project excluding Plant)	171
Table 21-3:	Basis of Processing Plant Cost	
Table 21-4:	Summary of LoM Capital Expenditure	172
Table 21-5:	Plant Operating Cost Breakdown	173
Table 21-6:	G&A Operating Cost BreakdownOperational	174
Table 21-7:	LoM Unit Operating Costs	174
Table 21-8:	Summary of LoM Operating Costs	
Table 22-1:	LoM Summary Production	
Table 22-2:	Planalto PEA Financial Highlights	
Table 22-3:	Description of non-IFRS metrics used	179
Table 22-4:	PEA Annual Cashflow Summary	
Table 22-5:	NPV Sensitivity to Key Project Inputs at 6%, 8% and 10% Discount Rates	
Table 22-6:	NPV and IRR Sensitivity to Specific Commodity Prices	185
Table 22-7:	NPV Sensitivity to Discount Rate	185

List of Figures

Figure 4-1:	Location of Planalto Project in Para State, Brazil (Source: GE21)	
Figure 4-2:	Planalto and Surrounding Features (Source: Lara)	
Figure 4-3:	PML Mineral Licence Areas, key Mineralisation Features, Municipal Boundary	21
Figure 4-4:	Consolidated approvals timeline for Planalto Project	24
Figure 5-1:	Existing Access (Source: Lara)	29
Figure 5-2:	Typical Monthly Rainfall and Temperature (Source: GE21)	30
Figure 5-3:	River cross sections of Stations 1 (a) and 2 (b) on Cupuzeiro Creek (Source: Lara 2	
Figure 5-4:	Hydrological Setting of Planalto Project (Source: Lara, 2025)	
Figure 6-1:	Anglo American soil copper survey (Source: GE21)	
Figure 6-2:	Anglo American airborne magnetics survey data (Source: GE21)	
Figure 7-1:	Carajás Province (Brazil) and Regional geological setting of Planalto project (So GE21)	urce
Figure 7-2:	Geological units of the Carajás Province (Source: GE21)	39
Figure 7-3:	Local geological setting of Planalto Project (Source: GE21)	
Figure 7-4:	Section 9295100N showing Metasomite Body (Source: Lara)	
Figure 7-5:	Drill core with coarse chalcopyrite veining in volcanics (Source: GE21)	
Figure 7-6:	Reflected Light Photomicrographs (Source: GE21)	
Figure 10-1:	Drilling at Homestead-Cupuzeiro and Silica Cap Targets (Source: GE21)	
Figure 11-1:	Blank Sample Results (Source: GE21, 2024)	54
Figure 11-2:	CRM Results for OREAS 506 for Cu and Au (Source: GE21, 2024)	56
Figure 11-3:	QAQC field duplicate analysis (top), pulp duplicate analysis (bottom) (Source: 0	3F21
· ·	2024)	57
Figure 13-1:	Locked cycle testing flowsheet Homestead samples (Blue Coast)	
Figure 13-2:	Homestead Rougher Flotation Kinetics	
Figure 13-3:	Primary Grind Sensitivity Copper Recovery vs Grind Size	
Figure 13-4:	Cupuzeiro Laboratory Rougher Flotation Results	
Figure 14-1:	Domain model Plan View and Cross Sections, looking north (top) and west (bo	
Figure 14-2:	(Source: GE21, 2024) Cross-section through GE21 classified block model and MRE pit (Source: GE21, 2	2024)
Eiguro 14 2:	Dianalta Prainat Evaloration Potantial	
Figure 14-3:	Planalto Project Exploration Potential	
Figure 16-1: Figure 16-2:	Planalto project looking NE (source: Lara)	
	Pit Optimisation Results (Lara, 2025)	
Figure 16-3:	Pit Shells Selected (Lara, 2025)	
Figure 16-4:	Silica Cap, Pushback 1 and Pushback 2 (Lara, 2025)	
Figure 16-5:	Pushback 3 and Ultimate Pit (Lara, 2025)	
Figure 16-6:	Annual Pit Rock Movement (Lara, 2025)	
Figure 16-7:	Annual Mining by Pushback (source: Lara, 2025)	
Figure 16-8:	Mining Sequence Pre-Strip to Year 3 (Lara, 2025)	
Figure 16-9:	Mining Sequence Year 5 to Final Pit (Lara, 2025)	
Figure 16-10:	RQD, intact rock strength and weathering	
Figure 16-11:	Representative example of overburden/saprolite (Borehole 23-016: 6.49 m to 13.0	
Figure 16-12:	Downhole intersections of R0 strength material representing saprolite unit	103
Figure 16-13:	Representative section of transition rock (Borehole 23-005: 39.90 m to 52.76 m)	104
Figure 16-14:	Sharp contact between saprolite and fresh rock (Borehole 19-027: 17.90 m to 23.7	
Figure 16-15:	Representative section of fresh rock (Borehole 19-027: 136.54 m to 143.94 m)	105
Figure 16-16:	Intersections of <20% RQD (representing fracture zones); yellow circle shows de <20% RQD in Silica Cap pit	
Figure 16-17:	Typical example of fracture zone (Borehole 22-016: 280.40 m to 282.48 m)	107
Figure 17-1:	Preliminary Flowsheet (source: ONIX)	
Figure 17-2:	General Arrangement. Process Plant (Onix)	
Figure 18-1:	Overall Project Layout (source: Lara)	
Figure 18-2:	Project Access Road	
Figure 18-3:	Planalto historical TSF Location Plan (ALB Engenharia, 2025)	

Figure 18-5:	Planalto PEA TSF Options (SRK, 2025)	128
Figure 18-6:	TSF Option 1 Layout and key metrics	130
Figure 18-7:	Option 2 - Central Thickened Discharge	
Figure 18-8:	Option 3 General Arrangement and Key Metrics	132
Figure 18-9:	Option 4 General Arrangement and Key Metrics	133
Figure 18-10:	Cupuzeiro Creek in January during rainy season	140
Figure 18-11:	General Arrangement: Infrastructure Area (ONIX_R3_Data_2025_AUG)	144
Figure 20-1:	ARD classification based on NPR and NAG Results pit waste and mineralization samples	
Figure 20-2:	ARD classification based on NPR and NAG Results for tailings samples	165
Figure 22-1:	LoM Mining Schedule vs Copper Produced in Concentrate	177
Figure 22-2:	LoM Annual Cashflow	180
Figure 22-3:	NPV (8%) Sensitivity to Key Project Inputs	184

SRK Consulting (UK) Limited 5th Floor Churchill House 17 Churchill Way Cardiff CF10 2HH Wales, United Kingdom E-mail: enquiries@srk.co.uk URL: www.srk.com Tel: + 44 (0) 2920 348 150

NI 43-101 PRELIMINARY ECONOMIC ASSESSMENT OF THE PLANALTO COPPER - GOLD PROJECT, BRAZIL

ITEM 1. SUMMARY

1.1 Introduction

SRK Consulting (UK) Limited and SRK Consultores do Brasil Ltda (together, SRK) compiled this NI 43-101 Preliminary Economic Assessment (PEA) of the Planalto Copper Project (Planalto, the Planalto project, or the project) in Brazil, on behalf of Lara Exploration Ltd (TSX-V: LRA) (Lara).

The Planalto project presented in this study includes open pit mining of three deposits, Homestead, Cupuzeiro and Silica Cap, from two open pits, the main pit at Homestead/Cupuzeiro and a smaller pit at Silica Cap with processing of run of mine (RoM) material using an industry standard flow sheet of crush grind and flotation to recover the copper mineral chalcopyrite.

The economic assessment of the project is based on inputs from Lara and their advisory teams in Brazil, which SRK has reviewed. The mine plan includes a significant amount of Inferred Mineral Resource which is allowed for in a PEA study. At this stage, there has been insufficient work completed to achieve a prefeasibility level of understanding for the project; therefore Mineral Reserves are not available for the project at this time.

1.2 Setting

The project is accessible by paved and unpaved road off the Canaã dos Carajás to Parauapebas highway in Para State, Brazil. It is some 40 km south of the airport in Parauapebas and some 700 km from the sea port in Belem. The project site is on gently undulating farmland crossed by small scale rivers with minor primary forest growth along the banks.

Three high tension power lines cross the northern part of the project area. There are a number of operating mines in the wider area including open pit iron ore mines and copper mines owned by Vale S.A. (Vale) and BHP Group Limited (BHP).

The Planalto project comprises 6 contiguous Exploration Licences covering a total area of 4,212.25 ha; Lara has secured land access rights to five of these and is currently negotiating access to the recently optioned Atlantica ground in the east of the project area. Lara has assembled the land package through a series of acquisitions and transactions in recent years (resulting in four option deals referred to as BAIP, Tariana, Zaspir, and Atlantica).

1.3 Geology, Mineralisation and Deposit Type

The Planalto mineralisation is hosted in mafic-intermediate volcanics located in a complex thrust fault zone at the southern edge of the Carajás Basin. The volcanics immediately north and east of the Planalto felsic granite are intensely affected by sodic and potassic alteration and invaded by veining and breccias with feldspar, carbonate, fluorite, magnetite and chalcopyrite mineralisation. Copper grades are typically 0.5% and there are low levels of gold associated with the copper; the project is expected to have a minor gold credit.

Mineralisation is focussed in stacked sub-parallel sheet-like structures that persist over hundreds of metres, the mineralisation is accompanied by pyrite further north in the Cupuzeiro deposit area.

The style of mineralisation is similar to other copper occurrences and deposits in the region which have a similar association with magnetite and sodic alteration.

Weathering in the area extends to a depth of approximately 15 m.

1.4 Exploration and Drilling

The first recorded significant exploration at Planalto comprised soil sampling, which delineated four copper anomalies on what are now the BAIP concessions; one located on the Homestead-Silica Cap trend and three others west of this within Lara's current land package. Airflown geophysics were also completed. Two drillholes were completed in 2003.

Lara and Capstone Copper Corp (Capstone) conducted exploration subsequently, starting in 2016. This included infill soil sampling, IP surveys and geological mapping, petrographic studies. Limited drilling by Lara up to 2018 was followed by a more substantial drilling programme funded by Capstone. Some 25,838 m has been drilled in 85 diamond drillholes mostly over the Cupuzeiro and Homestead deposits, with more limited coverage on Silica Cap.

Drilling, sampling, surveying, logging and assaying were undertaken using industry standard methods resulting in a dataset that is suitable to support Mineral Resources.

1.5 Mineral Processing and Metallurgical Testing

Processing testwork was undertaken by Blue Coast Metallurgy & Research laboratory, Vancouver, Canada.

Initial testwork was undertaken in 2020 using three samples from the Homestead deposit. This included mineralogy, bond work index determination, batch flotation tests and a locked cycle test on a sample grading 0.48% copper.

A second batch of testwork conducted in 2023 used three samples and a master composite from the Cupuzeiro deposit. This included mineralogy, bond work index determination, batch flotation tests, a locked cycle test (on a sample grading 0.46% copper) and two kinetic response tests.

For the Homestead testwork, a grind size of P_{80} of approximately 75 μ m was used, whereas a slightly coarser P_{80} of approximately 100 μ m grind size was used in the Cupuzeiro testwork, resulting in slightly lower overall copper recoveries in the latter.

Liberation work indicated primary grinding to a P_{80} of $65-75~\mu m$ should be used and potentially a concentrate regrind to a P_{80} of $15-25~\mu m$ would be required to more fully liberate the chalcopyrite.

Bond work index indicated that the mineralisation is Hard with a Bond Work Index (BWi) of 18.5-20.0 kWh/t. This hardness is reflected in the choice and sizing of comminution equipment used in this PEA.

An overall summary of this testwork used in this PEA is an estimated 90.8% recovery of copper to a concentrate with a grade of 28% Cu and a gold recovery of 51% to the concentrate with little potential for additional gravity recovery.

1.6 Mineral Resource Estimate

GE21 Consultoria Mineral Ltda (GE21) conducted geological modelling, statistical analysis, block modelling and resource reporting for the Planalto deposit in 2024. SRK has reviewed this work and has adopted the estimate and the classification so produced.

Grade estimation domains seek to outline a mineralised feature exceeding 0.3% Cu; these are reasonably continuous stacked elongated lenses which were essentially mirrored by SRK's independent check 3D assessment.

Following a geostatistical appraisal, 2 m composited assay data were interpolated into a block model using Ordinary Kriging. Density values based on normal sample measurements were also brought into in the block model.

An open pit shell using suitably elevated metal prices of USD 10,000/t for copper and USD 2,200/oz for gold, was used to limit the depth of the reported Mineral Resource which was also reported above a cut-off grade of 0.16% Cu equivalent.

The Mineral Resource, effective 15 October 2025, has been reported using the CIM Definition Standards. Data quality is generally of a good standard, sufficient to report the confidence categories used in this PEA. Indicated Mineral Resources are conferred where continuous mineralised bodies are demonstrated with drilling spaced at 60-100 m. Areas where continuity is less well established, or is based on wider drillhole spacing, are classified as Inferred.

The Planalto Project Mineral Resource comprises:

- Indicated: 47.7 Mt at an average grade of 0.53% Cu and 0.06 g/t Au (0.56%CuEq)
- Inferred: 154 Mt at an average grade of 0.36% Cu and 0.04 g/t Au (0.38%CuEq)

Mineral Resources are not Mineral Reserves and they do not have demonstrated economic viability.

There is additional mineralised oxide material above the fresh rock Mineral Resource for which processing testwork has not been conducted; this provides Exploration Potential of some 3.0 - 4.0 Mt at 0.4 to 0.5% Cu and 0.02 to 0.05 g/t Au. Further hard rock exploration potential exists north and south of Silica Cap and along trend southwards into the Atlantica ground. Lara intends to undertake infill drilling in the main pit early pushbacks, in Silica Cap pit and along trend in the Atlantica area.

1.7 Mining Operations

Open pit mining is envisaged, with one large pit to excavate the Homestead and Cupuzeiro deposit areas and a second smaller pit to mine the Silica Cap deposit. The planned mining equipment will be CAT395 excavators and 40 t trucks for ore mining on 5 m benches to achieve a production rate of 8 Mtpa with sufficient selectivity for the deposit geometry, and expected 7% dilution and 2% losses. Some 13.4 Mt of low grade material (between 0.18% and 0.21% Cu) will be stockpiled.

Larger format Liebherr R 9250 excavators and CAT 777 trucks will be used for waste mining on 10m benches at a stripping ratio of 2:1.

Contractor mining costs are estimated to be USD 2.95/t.

Pit designs have been completed with staged pushback positions using appropriate benchberm-ramp configuration and an inter-ramp pit slope angle in keeping with the expected geotechnical conditions which, below the 10-15 m thick weathered rock, are expected to be quite hard and competent. There are, however, some areas of low rock quality, probably relating to geological structures and the pit designs may ultimately change as these become better understood.

1.8 Processing and Recovery Operations

The basis of design in this PEA is a conventional 8 Mtpa concentrator with crushing, grinding and froth flotation to produce a copper concentrate with a grade of 28% Cu with a copper recovery of 90.8% and a gold recovery of 51%.

An appropriately sized crusher is expected to operate with 70% utilisation allowing for maintenance. Crushed material is stored on a 2-3 day capacity stockpile and then fed at a constant rate to the SAG and ball mills. Fine material feeds into rougher flotation cells; the rougher product is reground to achieve finer sizing and improved liberation and separation of chalcopyrite in the subsequent cleaner flotation circuit which is then thickened, filter pressed and collected as concentrate with 8% moisture. Gangue, which is rejected from the flotation circuit, is thickened and discarded and stored as tailings.

Parts of the Cupuzeiro deposit RoM plant feed is expected to contain elevated pyrite; when this material is fed to the processing plant it will be necessary to divert the pyrite-rich cleaner-scavenger tailings to a dedicated pyrite tailings dam so that any subsequent interaction with the natural environment can be appropriately managed. A water treatment plant is included to achieve this.

Major equipment items have been costed on the basis of quotes received from Brazilian and international manufacturers.

1.9 Tailings Disposal

As part of the PEA, SRK undertook a tailings storage options study. A number of technologies were considered and many different locations and embankment configurations were studied.

The PEA base case envisages a tailings storage facility (TSF) located to the SE of the mine site which is entirely within Lara's licence area. The TSF comprises two cells which would be utilised for conventional slurry tailings with storage for the first 13 years of tailings production. During Year 13 of operations, a new deep cone thickener would be installed close to the TSF. Tailings deposition would switch to paste (65-70% solids w/w) from Year 14 which would accommodate remaining life of mine (LoM) tailings. This approach is utilised successfully for thickened tailings deposition at the nearby Sossego mine and is likely to be viewed favourably by regulatory authorities. Furthermore, there will be a small, dedicated storage facility for pyriterich tailings.

1.10 Project Infrastructure and Logistics

The PEA envisages a number of infrastructure requirements for the project including power supply, processing plant, tailings storage facility, waste rock dump, water management channels including a river diversion, process water supply pond, water treatment plant, a 4 km site access road and bridge, haul roads, RoM pad and low grade stockpile, plus miscellaneous site utilities.

There are a few options to connect with the national grid for power supply; all benefit from relative proximity to established power lines; which will require land access and agreements for connection and power supply.

Power in Brazil's national grid is 85% from renewable sources and is relatively affordable by international standards; the PEA assumes a power cost of USD 0.06/kWh.

This PEA assumes concentrate will be transported by road truck approximately 680 km to the port of Vila do Conde (Barcarena, Para State) where it will be loaded onto ocean going vessels for shipping. A cost of USD 185/t concentrate is used in the PEA. Rail and river options are also possible but not currently favoured by Lara.

1.11 Water Management

The tropical climate and the topographic situation of the project area mean that surface water management will be key to derisking mining operations and safeguarding the natural environment. A number of engineered features have been designed and costed at a conceptual level. A provisional water balance for the site, including the requirement for water in the processing plant has been presented in this PEA.

The PEA envisages numerous diversion channels to manage surface water run-off and water levels in the nearby creeks particularly during intense storm events. It also gives consideration to treating and management of water that has been in contact with sulphide-bearing rock, a water treatment plant has been designed and costed at a conceptual level.

1.12 Environment, Permitting and Social Consideration

Lara has prepared an approvals roadmap for the project, which includes application for the Preliminary Environmental Licence (LP) in Q3 2026, application for the Installation Licence (LI) in Q4 2028, and the Operations Licence (LO) and the start of operations for 2030.

In 2025, Lara commissioned CLAM Engenharia to commence an EIA process for the Planalto project, which is due to be completed in Q2 2026. Planned field studies include air quality, springs survey, water quality, flora and fauna, socio-economic and speleology (caves). These studies will build on environmental information collected from the project area in 2021. The need for a study on archaeology, historical and cultural heritage will be determined following consultation with regulatory authorities.

The EIA process will also include stakeholder engagement and public hearings. Lara is already in dialogue with a number of key stakeholders, including local authorities, local landowners, investors and partners, and will continue to do so as the Project progresses; however, a stakeholder engagement plan, formal records of engagements and grievance mechanism are still to be developed.

As the EIA process progresses and builds a comprehensive understanding of the environmental and social context of the project, it will be important to maintain a strong link between project development and ESG workstreams so that ESG information can be effectively and promptly embedded into technical decision making. Early and effective integration of these workstreams will result in more sustainable outcomes for the project and will likely improve overall permitting timeframes and outcomes.

The key issues for consideration will include acquisition of surface rights, minimizing the project footprint to avoid impacts on existing land use and protected areas, characterizing and minimising geochemical risks from mine waste (waste rock and tailings) through appropriate design of mine waste facilities, minimising impacts on surface water and groundwater users and project affected people close to and downstream of project facilities. Climate change considerations will also need to be considered in future stages of project development, particularly minimising carbon emissions from the future operation and demonstrating resilience to future climate scenarios in closure designs.

A provisional closure plan has been put forward by Lara, amounting to some USD 18.3M; this will be evolved and reviewed as studies advance.

1.13 Preliminary Economic Assessment

Based on the inputs and assumptions in this report, key results of the cash flow model for the Planalto Project are estimated to be:

- Post-tax Internal Rate of Return (IRR) of 21%.
- Post-tax NPV of USD 378.0M, at an 8% discount rate.
- Post-tax net free cash flows of USD 1,065.5M.
- Copper accounting for 95% of net revenue, with gold contributing 5%.
- Undiscounted pay-back (post tax) is achieved 3.5 years following start of concentrate production.
- All-in Sustaining Cost (AISC) of USD2.69/lb payable copper (with gold revenue treated as by-product credit).

Further financial highlights of the Planalto PEA are presented in Table 1-1.

Table 1-1: Planalto PEA Financial Highlights

Item	Unit	Value
Total Site Costs	(USD/lb payable)	2.14
Government Royalties	(USD/lb payable)	0.08
Total Adjusted Operating Costs	(USD/lb payable)	2.54
All in Sustaining Costs*	(USD/lb payable)	2.69
Capital Expenditure		
Total Initial Capital Expenditure	(USD M)	546
Sustaining Capital Expenditure	(USD M)	148
Closure Costs	(USD M)	22
Life-of-Mine Total Capital	(USD M)	716
Financial Evaluation		
Average Annual Net Revenue	(USD M)	259
Average Annual Free Cashflow	(USD M)	91
After-tax NPV (8% discount)	(USD M)	378
After-tax IRR	(%)	21.0%
Initial CAPEX/NPV Ratio	(-)	1.44
Payback	(Years)	3.5

Certain performance measures reported here are not in accordance with International Financial Reporting Standards (IFRS). These performance measures do not have a standardized meaning under IFRS and are calculated according to the descriptions given in Table 22-3.

An NPV (using a discount factor of 8%) and an IRR sensitivity to four specific sets of commodity prices is presented in Table 1-2. A sensitivity to discount rate is presented in Table 1-3.

Table 1-2: NPV and IRR Sensitivity to Specific Commodity Prices

Copper Price	Gold Price	NPV 8% After Tax	IRR After Tax
(USD/t)	(USD/oz)	(USD M)	(%)
9,250 ¹⁾	2,434	328	20%
9,500 ²⁾	2,500	378	21%
10,500 ³⁾	2,750	582	27%
11,000 4)	4,000	724	30%
) Based on 3-year average prices; 2) PEA prices; 3) Consensus long term prices; 4) 15 October 2025 spot prices			

Table 1-3: NPV Sensitivity to Discount Rate

Discount Rate	NPV (USDM)
4%	642
6%	495
8% (PEA Base)	378
10%	284
12%	208

1.14 Conclusions

The Planalto Project is accessible by road within a two hour drive from Parauapebas, Para State, Brazil; there are several operating mines within 100 km of the site. The project area comprises 6 mineral tenements totalling 4,212.25 ha for which Exploration Licences have been granted. The area is mainly farmland and Lara has negotiated access to some areas and continues to negotiate access to remaining areas. There are a number of creeks with associated primary forest present; these will require diversions and management structures near the mine area for which conceptual designs have been completed and costed.

SRK has reviewed and modified where considered necessary technical and environmental work undertaken by Lara's consultants in Brazil. SRK's representative, Martin Pittuck, lead QP for the PEA, visited the project area, offices and core storage facilities between 12 and 15 May 2025.

Early exploration work generated geophysical and geochemical copper in soil anomalies, some of which were drill tested before Planalto Mineração Ltda's main work programme began. The main deposit is beneath the largest of these, whilst other anomalies, one depicting a connected linear trend, merit further investigation.

The main deposit is hosted by intensely altered, mafic-intermediate volcanics which are generally weathered to a depth of up to 15 m; only a few outcrops of fresh rocks exist.

Veining and brecciation contains chalcopyrite, plus minor pyrite and magnetite mineralisation with associated sodic and felsic feldspar alteration; these are concentrated in shallow dipping stacked lenses generally north of the Planalto Granite (Cupuzeiro and Homestead) and localised to some extent in a mylonite zone along the eastern edge of the granite (Silica Cap).

The deposits have been defined by good quality diamond drilling, 85 drillholes for a total of 25,838 m provide a variable coverage pattern, generally better than 200 m spacing.

Where mineralisation is demonstrably continuous and covered by drilling better than 80-100 m spacing this has been classified as Indicated Mineral Resource; areas with more widely spaced drilling up to a distance of 200 m are classified as Inferred. Drillholes have been sampled, assayed, quality controlled and assessed for density using conventional methods.

Lara's consultant, GE21, reported a maiden Mineral Resource estimate for the project; this is confined to an optimised pit shell using appropriate technical-economic parameters:

- Indicated: 47.7 Mt at an average grade of 0.53% Cu and 0.0 6g/t Au (0.56%CuEq)
- Inferred: 154 Mt at an average grade of 0.36% Cu and 0.04 g/t Au (0.38%CuEq)

SRK has reviewed and adopted this model and statement for the PEA.

The geotechnical condition of the rock is generally a hard mostly solid rock mass with several intervals of broken core representing fracture zones which likely represent fault zones which will need to be assessed in more detail going forwards. The pit slope design parameters are considered reasonable.

Mine planning has been completed in reasonable detail so that mill feed and waste schedules are suitable and practically achievable at a suitable level of detail for the PEA. Contractor mining is envisaged.

Two rounds of metallurgical testwork have been completed providing an initial understanding of the mineral processing characteristics. The material is hard and this is reflected in the beneficiation concepts presented in the PEA. Based on three samples representing Homestead (0.46-0.58%Cu) and three samples representing Cupuzeiro (averaging 0.48%Cu), sulphide minerals have been provisionally characterised in terms of grain size and liberation characteristics in order to inform initial flotation circuit design and expected metallurgical recoveries for the PEA.

Comminution is envisaged to use crusher, SAG and ball mills with equipment sourced from regular suppliers. Conventional flotation is envisaged to produce a chalcopyrite concentrate with cleaner tails being diverted to a dedicated pyrite tailings storage facility when required. SRK has reviewed the equipment sizing and flotation circuit design with respect to the metallurgical testwork results and has estimated the following key metallurgical parameters:

- 8 Mtpa production rate;
- 90.8% copper recovery;
- 51% gold recovery; and
- copper concentrate grade 28% Cu.

Concentrate is expected to be transported by road some 680 km to the port of Vila do Conde.

The majority of tailings are not expected to be high in pyrite content and therefore suitable for disposal as slurry in a conventional facility to the southeast of the mine. After year 13, a change in disposal method is proposed where thickened paste deposition will allow a second cell on the same site to be created, mirroring technology in use at a nearby mine.

Many infrastructure items will be required to establish and maintain operations; these have been designed and costed at a basic level which is suitable for a PEA. A number of surface water management solutions and structures are currently understood mainly at a conceptual level. When progressing the project towards a prefeasibility study, a more detailed surface water management design and costing study will be required hand in hand with a more comprehensive assessment of site water balance and an improved level of confidence in the quantity and quality of contact water which will require treatment.

A number of options exist for power supply which should be investigated further and land access negotiations will need to be completed to achieve this eventually. Power from the grid is relatively clean and relatively cheap by international standards, which is considered to be a significant advantage for the project.

Environmental work is ongoing in order to achieve a staged set of permit applications and approvals necessary to eventually secure a mining licence and start operations by 2030. A number of surveys and stakeholder engagement programmes are required to be completed thoroughly and in a timely manner, with the professionalism and sensitivity necessary to keep the development plan on track. Key considerations are successfully securing access rights, minimising impact on protected areas, characterizing and minimising geochemical risks from mine waste (waste rock and tailings) through appropriate design of mine waste facilities, minimising impacts on surface water and groundwater users and project affected people close to and downstream of project facilities.

Based on the PEA economic analysis, the Planalto project base case has a NPV at 8% of USD 378M, an IRR of 21%, and an undiscounted payback of 3.5 years following start of production. Over the 18 year mine life, the project generates USD 1,066M in cashflow. The AISC of USD 2.7/lb Cu places the project in the third quartile on the cost curve (as prepared by S&P Capital IQ for 2024). These metrics indicate that the Planalto project has good economic potential and warrants further study.

1.15 Recommendations

Detailed recommendations to advance the project towards prefeasibility study (PFS) are given in respective sections of the main PEA report; a summary is provided here:

- Geology and Resource (see Section 14.7)
 - The majority of the Mineral Resource is currently classified as Inferred and this will need to be infill drilled to achieve Indicated classification ahead of the PFS.
 - A description of Lara's proposed drilling programme is given in Section 14.
 - A consistent and accurate quantification of pyrite will be required to better understand the amount of sulphide in the mill feed to assist with the management of diverting pyrite rich tailings to the pyrite storage facility.
 - Geochemical and mineralogical characterisation of mineralised and waste intersections will be important to add confidence to the storage plans for stockpiles, waste and tailings.
- Metallurgical Testwork (see Section 13.5)
 - Samples should represent a variety of mined grades and should include expected dilution.
 - Improve understanding of the physical behaviour using larger core samples than previously used geared towards SAG mill sizing and assessment of critical size material build up.
 - Crushing and HGPR testwork and trade off study.
 - o Ore sorting and coarse particle flotation testwork for an early gangue rejection study.
 - Concentrate regrind study.
 - More detailed flotation studies including locked cycle testing, stage kinetic testing, recovery vs concentrate grade optimisation.
 - o Concentrate and tailings initial dewatering study.
 - Tailings characterisation study.
 - Pyrite separation and tailings characterisation study.
 - o Oxide mineralisation at surface, processing option study.

Mining

- There is an opportunity to refine pushback designs to further improve the grade of mill feed in the early years of life of mine plan; however, this will probably change again after new drilling and production of a revised block model in future.
- Geotechnical drilling will be required to better characterise the risk posed by zones of weakness in the vicinity of pit slopes.

Surface Water Management

Local climate, water quality and local watercourse responses to rainfall need to be characterised to give a more confident and detailed baseline study, which needs to be combined with a climate change assessment to feed into water balance and surface water management design aspects of a prefeasibility study.

- Advance the geochemical characterisation work to establish expected and worst-case water quality estimates from mining area including the pit wall, waste rock, stockpile and tailings.
- A hydrological model will be required to model the impacts of the mining project on groundwater fluxes.
- Dam breach assessment to classify retaining structures.
- Tailings (see Section 18.3.10) and Waste Characterisation (see Section 20.3.2)
 - Together with further metallurgical testwork where pyrite removal will be part of the programme, additional tailings testwork will be needed to characterise density, mineralogy, acid generating potential and stability parameters.
 - Acid rock drainage potential needs to be assessed using a greater number of samples and incorporating humidity cell tests and kinetic tests to study:
 - suitability of the current waste rock surface disposal solution.
 - stockpiled material with respect to oxidation during its storage time and consequent acid rock drainage potential and impact on flotation recovery impact.
 - waste rock suitability to be used in TSF construction.
 - Base case design should be taken to a more detailed status including sensitivity of storage volume to beach slope and density assumptions.
 - Foundation conditions need to be investigated to confirm current design parameter assumptions.

Infrastructure

- All aspects of project infrastructure will need to be refreshed and estimated in more detail as the project develops.
- Logistics options for getting concentrate to port via road, rail and river should continue to be studied.

Marketing

- A pyrite concentrate sales study should be conducted to assess the opportunity for potential upside.
- Environmental Permitting and Governance (see Section 20.5)
 - Lara should commence the process of relocating all required legal reserves as this requires a specific authorization process.
 - the project needs to advance its water management plan, mainly to determine if any effluent discharge will occur and how this will be managed to avoid or minimize impacts on people and the environment.

ITEM 2. INTRODUCTION

SRK Consulting (UK) Limited and SRK Consultores do Brasil Ltda (together SRK) compiled this NI 43-101 Preliminary Economic Assessment (PEA) for the Planalto Copper Project (Planalto, Planalto project, or the project) on behalf of Lara Exploration Limited (Lara) which is listed on the Toronto Stock Exchange (TSX) Venture Exchange (TSX-V: LRA).

Lara owns the Planalto project through a 100% owned Brazilian subsidiary, Planalto Mineração Ltda (PML).

2.1 Terms of Reference

Lara and SRK entered into an agreement on 9 May 2025 for SRK to review work undertaken by Lara and its consultants at the Planalto project, and for SRK to compile a NI 43.101 compliant PEA report for the Planalto project. SRK was requested to visit the Planalto project site, spend time with Lara's geology team and review the work undertaken by Lara's consultants in Brazil in order to allow SRK to author a PEA.

The PEA report documents the development progress made by the project up to the effective date of reporting.

2.2 Information Sources

Much of the work presented in this PEA was originally completed by Lara and their consultants, which SRK has subsequently reviewed and incorporated into this PEA:

- The exploration and drilling data used for the Mineral Resource estimation (MRE) has been collected mostly by Lara; the MRE itself was conducted by GE21 in 2024.
- The mining study is based on work originally authored by GE21 (slope stability analysis), Rene Carapetian (pit optimization, pushback design and scheduling) and Mineset Consultoria (mine equipment selection, mine operation and operating costs).
- Processing testwork was undertaken by Blue Coast Metallurgy & Research Laboratory, Vancouver, Canada.
- Process flowsheet design was completed by Consensum Engenharia; equipment direct cost estimation, major infrastructure items and process plant operating cost estimation was undertaken by ONIX Engenharia e Consultoria Ltda.
- Environmental work has been compiled and recently undertaken by CLAM Meio Ambiente; a number of their documents form the basis of SRK's review presented in this PEA.
- First pass tailings and river diversion concepts and engineering were originally completed by ALB Engenharia in April 2025. Additional tailings options and cost estimates have been provided by SRK in the completion of this PEA.
- Water management infrastructure was designed and sized at a conceptual level by ALB Engenharia.

2.3 Personal Inspection

Martin Pittuck visited the Planalto site and Lara's offices and core storage facilities in nearby Canaã dos Carajás between 13 and 16 May 2025.

2.4 Effective Date

The effective date of the report is 15 October 2025, representing the date on which all inputs to the PEA economic model were finalised.

Other key dates pertinent to the information on which this PEA is based include the MRE and supporting data, originally reported by GE21 dated 3 July 2024.

Processing testwork was concluded in 2023.

Mineral Concession Status was updated in October 2025 following the addition of the Atlantica Exploration Licence to the project.

ITEM 3. RELIANCE ON OTHER EXPERTS

3.1 Legal Title

Lara retains FFA Legal and Mining Ltda. (FFA), whose lawyers are qualified to practice law in the Federative Republic of Brazil, to continuously supervise and maintain the Planalto mineral rights in good standing. No verification has been made by SRK; however, FFA has provided a legal title opinion letter dated 17 September 2025, confirming the Planalto project exploration licences are current and in good standing.

SRK has relied on Lara and their advisors concerning the Planalto Project mineral tenure (Sections 4.2.2, 4.3.2 and 4.4.2) and regarding the application of Brazilian tax laws to the project Technical-Economic Model (Section 22.4 and 22.6).

ITEM 4. PROPERTY DESCRIPTION AND LOCATION

4.1 Location

The Planalto Copper Project is located in the Carajás region in the SE of Para State (Figure 4-1) approximately 700 km south by road from the state capital Belem, which is located at the mouth of the Amazon River. The project is on the administrative boundary between the Canaã dos Carajás municipality to the west and Curionópolis municipality to the east.

SRK Consulting (UK) Limited Planalto NI 43-101 – Main Report

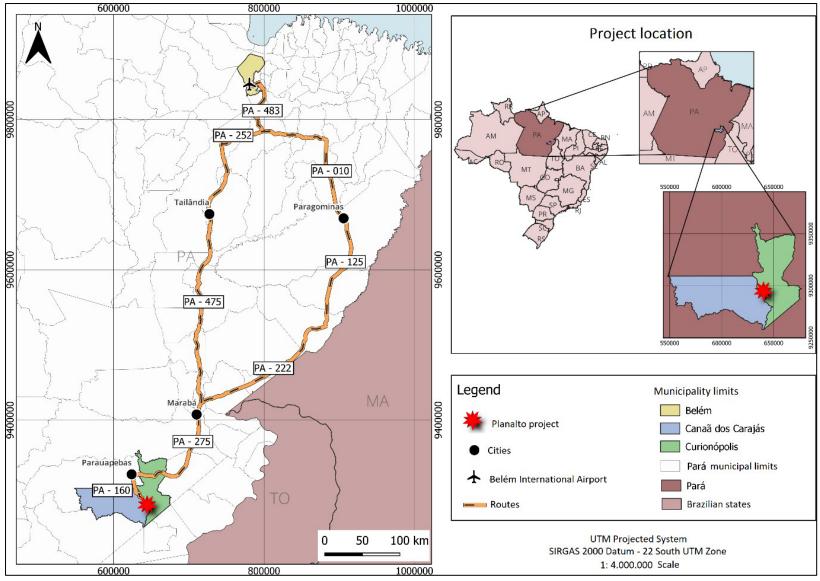


Figure 4-1: Location of Planalto Project in Para State, Brazil (Source: GE21)

The project is close to the major mining centres of Canaã dos Carajás, Parauapebas and Curionópolis being some 30 km north and northeast of the town of Canaã dos Carajás and centred at coordinates - 60 22' 36.70" S/- 490 45' 41.84" W.

There are a number of operating mines in the area such as:

- Sossego Copper (Vale S A);
- Pedra Branca / Antas Copper (BHP);
- S11D and Serra Norte Iron Ore (Vale S A);
- Celesta Copper Gold (Tessarema Resources, in which Lara owns a 5% preferred interest without the obligation to contribute to costs plus a 2% royalty on any production); and
- Cristalino copper deposit currently under development by Vale S A.



Figure 4-2: Planalto and Surrounding Features (Source: Lara)

4.2 Land Access and Surface Rights

4.2.1 General

To carry out exploration activities in Brazil, including drilling, an access agreement is required with the surface rights owner (landowner).

According to Decree 9,406, of 12 June 2018 of the Mining Code, mining activity is considered a public utility in Brazil. Thus, the holder of the mineral rights may request the National Mining Agency (ANM) to issue a declaration of public utility (DUP) for the purpose of establishing mineral easements or expropriation of property.

If there is no agreement between the mineral rights holder and the landowner, the mineral rights holder can file a letter informing the ANM of the need for an easement area as provided for in article 59 of the Mining Code. If there is no amicable agreement to compensate for occupation and access, the mineral rights holder can file a lawsuit requesting an inspection to establish the amount of compensation and income to be paid to the owner, in compliance with the provisions contained in article 27 of the Mining Code.

In addition to this compensation, if the mineral rights owner does not own the land property at exploitation it must pay a royalty to the landowner equal to 50% of the mining royalty (Financial Compensation for the Exploitation of Mineral Resources, CFEM) due to the State.

4.2.2 Project Specific

The Planalto project is located on private land used for cattle farming and the surface or leaseholder land rights across the project area are with various landowners and farming families. There are no indigenous claims in the area. Protected woodlands occur along the margins of the Cupuzeiro Creek and some of its tributaries.

In the Curionópolis municipality, land access agreements are currently in place with the landowners via an agreement with a farming family. In the Canaã dos Carajás municipality access is currently granted to Lara in the area of the Planalto deposit via a court order while a more definitive agreement is being negotiated. As of 15 October 2025, land access to the recently acquired Atlantica Exploration Licence is being negotiated.

All operations for mining, processing, waste material storage, mine access and power supply will be located within the current Exploration Licence areas for the base case options presented herein; however, some alternative and additional options for tailings storage are under consideration in areas which are partly or wholly outside Lara's licence areas.

4.3 Mineral Tenement Rights

4.3.1 General

Brazil is a federal republic; the Federal Constitution (October, 1988) is the basis of the legal system.

Key Legislation

Key applicable legislation for construction, operation and closure of mining projects includes the following:

- Mining Code (Decree-Law No. 227, 28 February, 1967) and its Regulations (including Decree No. 62934/1968 and recently Decree 10,965/2022 and Resolution ANM 68/2021 that regulates mine reclamation and closure requirements).
- National Environmental Policy (Law No. 6938, 31 August, 1981) and CONAMA (National Environment Council) Resolutions Nos. 1/86, 23/86, 9/90, 10/90 and 237/97 – provides for environmental requirements and licencing process;
- Forest Code (Law 12.651, May 25, 2012) provides aspects related to permanent preservation areas (APPs), legal reserves (LR) and rural environmental registry (CAR), the need for management of vegetation, and economic instruments;

- National System of Conservation Units (Law 9,985/2000) classifying conservation units to Integral Protection Units and Sustainable Use Units;
- National Water Resources Policy Law (Law No. 9433, 8 January, 1997) establishes the criteria for obtaining water grants;
- National Law on National Solid Waste Policy (Law No. 12,305, August 2, 2010) determines the requirement to implement the Solid Waste Management Plan;
- National Dam Safety Policy (Law 12,334/2010) which establishes the requirements for the
 accumulation of water for any use, the final or temporary disposal of tailings, and the
 accumulation of industrial waste;
- Law 13,540/2017, which provides for the annual exploration tax, and a mining royalty, known as CFEM (Financial Compensation for the Exploitation of Mineral Resources);
- National Policy on Climate Change (Law 12,187/2009) requires economic sectors to know their greenhouse gas emissions. In the voluntary market now adopted, companies are not obliged to reduce their emissions but can buy credits from environmental projects to offset their carbon footprint.

Exploration and Mining Licencing

Mineral licencing in Brazil is the responsibility of the Ministry of Mines and Energy, specifically the National Mining Agency (<u>Agência Nacional de Mineração</u> ANM). The mining and environmental permitting processes occur in parallel.

According to the Mining Code (Decree-law 227/1967), the granting of mining rights is a two-step process, starting with an Exploration Licence, (granted for 3 years, renewable with an optional 3 year extension) and ending with a Mining Concession.

At the end of the Exploration Licence term, the holder must submit a final exploration report (*Relatório Final de Pesquisa* or RFP) detailing all technical activities performed to define Mineral Resources.

If a discovery is made, Mineral Resources or Reserves are declared in the RFP; if the RFP is approved by ANM the holder has one year to present an economic exploitation plan (*Plano de Aproveitamento Econômico* or PAE) which is roughly equivalent to a pre-feasibility study.

After the PAE is approved, environmental approval in the form of an Installation licence (LI) can be obtained. The holder of an LI can apply for a Mining Concession.

4.3.2 Project Specific Ownership and Status

The project comprises 6 mineral tenements for which Exploration Licences have been granted; all are under option to PML. These cover a total area of 4,212.25 ha.

In 2020, three Exploration Licences were optioned from Vera Lucia Lopez Ferraz through her agent, Brasil Americas Investimentos and Participacoes (BAIP).

Two other Exploration Licences were added to the project in 2021; one acquired from a subsidiary of Anglo American do Brasil (Tariana) and one acquired from Mineração Zaspir Ltda (Zaspir).

One Exploration Licence was added to the project in October 2025, being optioned from Atlantica do Brasil Mineração Ltda (Atlantica).

Lara's Exploration Licences that make up the Planalto project are shown in Figure 4-3 and detailed in Table 4-1.

The Planalto copper deposit is located at the eastern side of licence 850.351/2007 and trends northward across 854.856/1996 into 850.453/2005.

Two copper exploration targets, the Highway-W and the Sodre targets, are present on 850.536/2012 and 850.537/2012,

Mineral tenement 850.453/2005 straddles the boundary separating the municipalities of Canaã dos Carajás and Curionópolis shown as a white line in Figure 4-3; the boundary in this area is defined by the Cupuzeiro creek.

Copper mineralization identified in the Silica Cap trends SSE in the direction of the Atlantica licence 850.204/2004.

SRK Consulting (UK) Limited Planalto NI 43-101 – Main Report

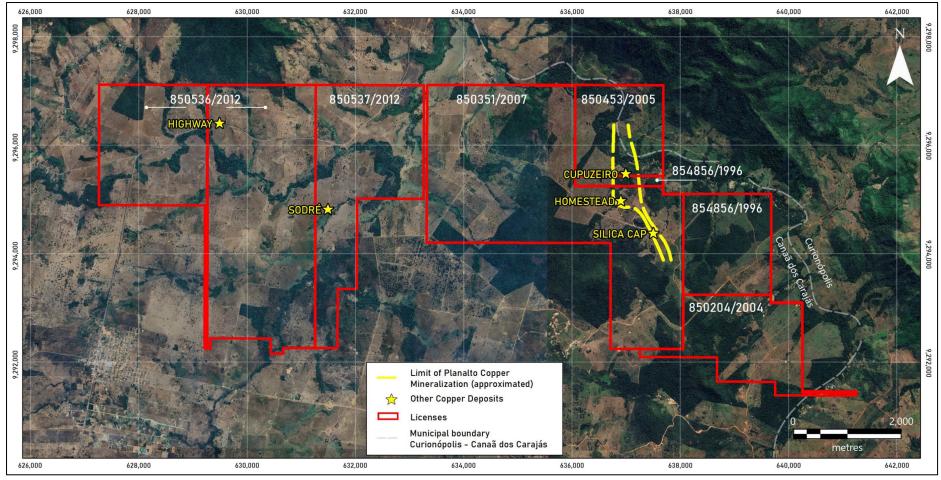


Figure 4-3: PML Mineral Licence Areas, key Mineralisation Features, Municipal Boundary

SRK Consulting (UK) Limited Planalto NI 43-101 – Main Report

Table 4-1: PML Mineral Licence summary

Optioned from	Process Reference Number	Licence Number	Application Date	First three years Granted Date	Mineral Rights Optioned to PML	Size (ha)	Municipality	Development Stage	RFP presented	RFP approved	PAE Submission	PAE Cancellation
BAIP	850.351/2007	5128	29/05/2007	27/05/2016	14/12/2020	1,261.82	Canaã dos Carajás	Mining licence requested	27/05/2019	31/10/2019	06/05/2022	03/10/2024
BAIP	850.536/2012	5130	21/05/2012	27/05/2016	28/05/2020	1,404.00	Canaã dos Carajás	Mining licence requested	27/05/2019	31/10/2019	06/05/2022	03/10/2024
BAIP	850.537/2012	5131	21/05/2012	27/05/2016	28/05/2020	592.00	Canaã dos Carajás	Mining licence requested	25/05/2019	31/10/2019	06/05/2022	03/10/2024
Tariana	850.453/2005	8033	29/06/2005	14/09/2015	10/03/2022	272.13	Canaã dos Carajás & Curionópolis	RFP approved	17/11/2023	15/04/2024	NA	NA
Zaspir	854.856/1996	9521	09/07/1996	24/11/2021	24/02/2022	336.80	Canaã dos Carajás	RFP approved	17/11/2023	15/04/2024	NA	NA
Atlantica	850.204/2004	10.405	03/05/2004	13/11/ 2014	ТВС	345,50	Canaã dos Carajás & Curionópolis	Exploration Licence renewed, file RFP by May 2026.				

4.4 Environmental Approvals

4.4.1 General

The Brazilian National Environmental Policy, (Law 6938/1981) requires potentially or effectively polluting activities to have an environmental licence. The licensing procedure allows the issuing agency to determine the conditions, limits and measures for the control and use of natural resources and authorises the installation and implementation of a project. The licence can be issued by any of federal, state or municipal agencies (Brazilian Federal Constitution - CF/1988, Article #24; Complementary Law #140/2011).

There are three stages of environmental licences issued during the development of a project:

- Preliminary Environmental Licence or Licença Prévia (LP): Indicates the mine site
 environmental viability, approves the concept and location of the project. The licence is
 subject to a specific environmental impact assessment and a formal public hearing.
- Installation Licence or *Licença de Instalação* (LI): Authorizes the construction of the project, permits the engineering works and is subject to the presentation of an environmental control plan.
- Operations Licence or Licença de Operação (LO): Allows the beginning of the operation.
 The company is required to provide evidence that the environmental programs and control systems were duly installed.

4.4.2 Project Specific Status

Historically, environmental permits for drilling in the municipality of Canaã dos Carajás were issued by the Municipal Environmental Department (Secretaria Municipal de Meio Ambiente-SEMMA). Permits for drilling in the Curionópolis municipality were issued by the State Secretariat for Environment and Sustainability (SEMAS) of the Pará State Government based in Belem.

In preparation for an application for the LP, an Environmental Impact Assessment (EIA) process for the Planalto project is under development by CLAM Meio Ambiente (CLAM), with an estimated completion date in Q2 2026. The EIA is being developed in accordance with the Terms of Reference issued by SEMAS.

Following completion of the EIA process, the application for the LP is scheduled for Q3 2026 and is expected to be granted within 12 months from the application (by Q3 2027).

Depending on the conditions of the LP, the application for the LI is expected to be submitted in Q4 2028 and granted six months later by mid-2029. Based on this information, the LO application is planned for Q4 2029 with its issuance expected to be within 180 days of application ahead of the start of operations planned for 2030. The detailed permitting and approvals timeline strategy defined by Lara for the Planalto project is shown in Figure 4-4.

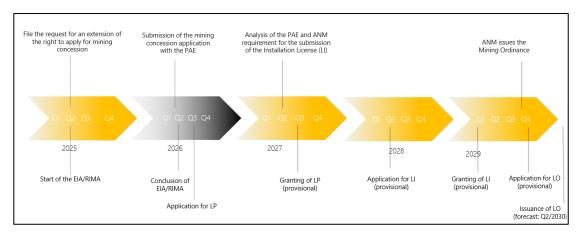


Figure 4-4: Consolidated approvals timeline for Planalto Project

The proposed approval process reflects statutory timeframes, but delays to the planned schedule could occur if material changes are made to the project design or additional information is requested by regulators. Although the project area is located across two municipalities, the permitting process will occur at a state level, so it is not expected that the cross-municipalities aspect poses a material risk to the project's permitting process; however, it will increase the number of institutional stakeholders to consult with during the EIA process.

The base case PEA scenario includes tailings storage facilities within the Exploration Licences controlled by Lara; however, the project also considers alternative tailings storage facilities in areas where the mineral rights are not granted to Lara. If surface rights are required in areas where mineral rights are owned by third parties, agreements between Lara and a third party are possible according to Brazilian legal regulatory framework (Decree-Law 227/1967 and Decree 9406/2018); however, there is no guarantee that the Lara and owner and/or the mining agency will agree terms for mining use purpose in these areas. Lara will continue to review and develop existing sites and alternatives to support the next development stage of the project.

The implementation of the Cupuzeiro Creek diversion is contingent upon obtaining a water use permit. Lara will submit the permit application concurrently with the Environmental Licensing, which is being developed by CLAM.

4.5 Mining Licence Application Status

Final Exploration Reports (RFPs) have been submitted for all licence areas except Atlantica. The BAIP options had RFPs approved in October 2019. Capstone, who were funding and managing work on the BAIP licences at the time, submitted a PAE to the ANM on 6 May 2022.

When Lara returned as the operator for the BAIP licences, a request was made to the ANM which was subsequently approved on 3 October 2024, to withdraw the PAE and to allow Lara to submit a new report to cover the expanded project including the Tariana and Zaspir optioned licences (notably to include drilling results and Mineral Resources in the Cupuzeiro area).

RFPs for the Tariana and Zaspir licences were submitted to the ANM on 17 November 2023 and both reports were approved on 15 April 2024. PML had one year from that date to submit Mining Licence applications along with a PAE, but before that deadline, requested an extension from the ANM for an additional year, in order to complete a modified PAE to include additional ground, such that the new deadline is 15 April 2026.

Lara plans to submit a new PAE report for all 6 Exploration Licence Areas (comprising BAIP, Tariana, Zaspir and Atlantica options) to the ANM by 15 April 2026; however, with the addition of the new Atlantica Licence may change that timeline, if imminent drilling results in the discovery of extensions to the Silica Cap mineralization material sufficiently material to change the scope of the mine development.

Applications for the LP have not yet been submitted, the prerequisite EIA is currently in progress.

4.6 Transaction Terms and Royalties

4.6.1 General

The Federal Government Royalties (CFEM) on concentrate sales from production are:

- 1.5% NSR royalty on gold production.
- 2% NSR royalty on base metals i.e. copper production.

The Private Landowner Royalty is equal to 50% of CFEM royalties (i.e. 0.75% on Au and 1% on Cu concentrate sales).

4.6.2 BAIP Option

On 25 February 2013, Lara announced that it had entered into an option to acquire 100% interest in the three mineral licences (850.351/2007, 850.536/2012 and 850.537/2012) all held in the name of Vera Lucia Lopes Ferraz through the intermediary of Brasil Americas Investimentos e Participacoes (BAIP).

Terms of the agreement are as follows:

- USD 500,000 in staged cash payments (all paid).
- Lara to fund all exploration expenses.
- Lara to pay a 2% NSR royalty to BAIP on production. Lara retains the right to acquire 50% of the royalty (i.e. 1%) for USD 2M until approval of the forthcoming PAE.

Lara has transferred these mineral rights to PML.

4.6.3 Tariana Option

On 11 January 2021, Lara, through its subsidiary PML, announced that it had entered into an option agreement with Mineração Tariana Ltda, a subsidiary of Anglo American do Brasil Ltda. to acquire the mineral licence 850.453/2005.

Terms of the agreement are:

- Staged cash payments of USD 150,000 (all paid)
- PML to complete a minimum of 2,000 m of diamond drilling (completed)
- PML to complete Mineral Resource and PAE studies (completed).
- PML to pay a 1.25% NSR on production with no buy-back rights.

• If Tariana is not in production by 31 July 2027 then a penalty payment of USD 50,000 will be due and PML will then pay a monthly amount of USD 4,167 for the sooner of five years or when production starts. These monthly payment amounts can be recovered by PML from up to 50% of royalties payable thereafter.

4.6.4 Zaspir Option

On 15 March 2021, Lara, through its subsidiary PML, announced it had entered into an option agreement to acquire the mineral licence application 854.856/1996 from Mineração Zaspir Ltda.

Terms of the agreement are:

- Staged cash payments of USD 250,000 (all paid).
- Paying a 2% NSR royalty on any production. Lara retains the right to buy one half of the NSR royalty (i.e. 1%) for USD 250,000.

4.6.5 Atlantica Option

On 14 October 2025, Lara announced it had entered into an option agreement to acquire the mineral licence application 850.204/2004 from Atlantica do Brazil Mineração Ltda (Atlantica).

Terms of the agreement are:

- Issuance of Lara Exploration Ltd. shares to the amount equivalent to CAD 375,000
- Complete a minimum of 2,000 m of drilling by 31 December 2027.
- Pay Atlantica USD 0.06/lb of copper contained in Measured and Indicated Mineral Resources, defined in a NI 43-101 report to be completed by 31 December 2027.
- Pay Atlantica USD 0.06/lb of copper contained in incremental Measured and Indicated Mineral Resources added up to 31 December 2028.
- Pay Atlantica USD 0.08/lb of copper contained in addition Measured and Indicated Mineral Resources added after 31 December 2028.
- Pay 2% NSR Royalty on any and all minerals extracted within the licence area.

4.7 Environmental and Social Liabilities

No environmental liabilities have been identified within the Planalto Project Exploration Licences. The current land use at the Planalto project is solely agricultural cattle grazing.

The most significant activity impacting the environment during the past seven years of exploration has been the relatively low impact caused by drilling activities. There has been some destruction of grassland; however, the drill pads and access roads have all been rehabilitated. Rehabilitation of the drill pad sites has been a condition of the drill pad environmental licensing issued by the Secretary of Environment of the Canaã dos Carajás Municipality (Secretaria de Meio Ambiente, SEMMA). PML has annual reporting obligations with SEMMA and must show photographic evidence of rehabilitation of the drill pads. Routinely, an environmental officer of SEMMA conducts an annual site inspection to check first-hand the progress of the rehabilitation activities. PML is up to date with the drill site rehabilitation schedule and is in compliance with current requirements. Small scale historical alluvial gold mining was undertaken in the Cupuzeiro creek within the Planalto Exploration Permit; this activity was reported to the relevant authorities by previous project operators in 2018, subsequent inspections by the relevant authorities were undertaken in 2022 by which time the activities had ceased. Historical small scale mining will be documented as part of the current environmental baseline study being undertaken by CLAM consultants.

The positive and negative social or community impacts from a mine development at the Planalto project will be assessed during the EIA process. The nearest community is the village of Vila Planalto, located 9 km SW of the Planalto Project. There are no indigenous communities within the Planalto project area and there are very few dwellings within the PML Exploration Licence areas, comprising of two farmhouses used part time by the farm owners and five wooden cottages for farm workers accommodation.

ITEM 5. ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

5.1 Physiography

The topography in the project area is generally undulating with elevations between 180 m and 220 m, with the exception of the southeastern part of the project where the Planalto granite forms high rounded hills up to 350 m to 400 m elevation.

Immediately to the north of the project area is the South Para Plateau where the altitudes vary from 500 m to 700 m above sea level in the Serra do Rabo .

The Cupuzeiro creek, which cuts across the Planalto deposit, flows northwest and discharges into the Verde River about 3 km downstream from the project.

5.2 Accessibility

Currently access to the Planalto project from Canaã dos Carajás is via a circa 12 km long local paved and unpaved road from Vila Planalto (Figure 5-1). Canaã dos Carajás has a small general aviation airstrip, but no commercial air service.

Vila Planalto can also be reached from the paved national road PA-160, some 15 km to the north; the road links to Parauapebas which has daily commercial air services from Belem, the Para State Capital and Belo Horizonte in Minas Gerais State.

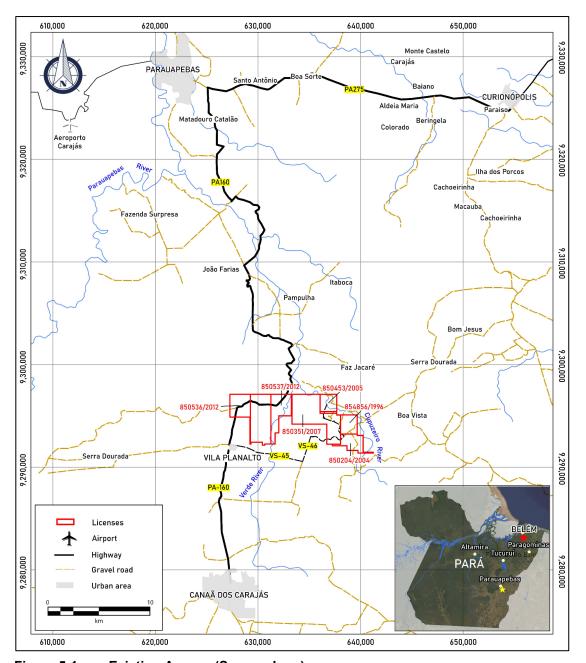


Figure 5-1: Existing Access (Source: Lara)

5.3 Local Population Centres

There are no communities within the project boundary. The village of Vila Planalto with a population of some 1,000 is approximately 9 km to the southwest of the project.

The closest town is Canaã dos Carajás, with a population of approximately 70,000 located approximately 30 km south-southwest of Planalto. Parauapebas, with a population of over 213,000 (data from 2020), is located approximately 40 km NW. Both Canaã and Parauapebas are major service centre providers and labour source for Vale's iron ore and copper mines in the Carajás North region and other operating mines. Any future operation is expected to be able to source local qualified people for mining operations.

5.4 Climate

5.4.1 Regional

According to studies conducted by Solução Socioambientais (2021), the climate of the Canaã dos Carajás region is classified as humid tropical with a dry winter (Aw), based on the Köppen classification.

This climate type features two well-defined seasons: a rainy season, from November to April, which accounts for approximately 80% of the annual precipitation, and a dry season, from June to September. Transition periods occur in May and October. Temperature typically varies between 17°C and 37°C, with the hottest months coinciding with the dry season. The typical variation through the year is shown in Figure 5-2. Winds in the region are predominantly weak, with an average speed of 1.86 m/s, there are seasonal variations in direction, with northeast and southwest winds being the most frequent.

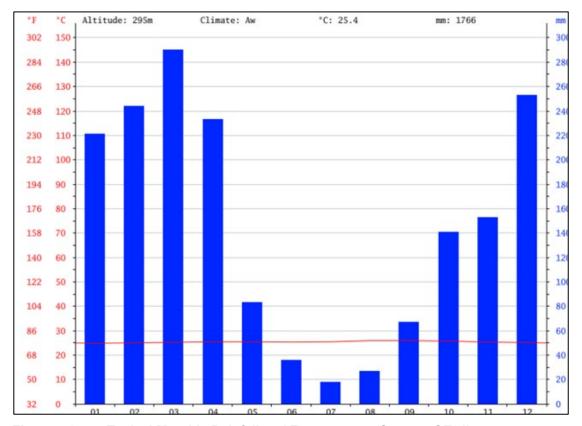


Figure 5-2: Typical Monthly Rainfall and Temperature (Source: GE21)

5.4.2 Project Specific

Meteorological data used to classify the climate were sourced from the town of Canaã dos Carajás, located approximately 30 km south-southwest of the Planalto Project Site. The average annual temperature is 26.3°C, with mean monthly maximum and minimum temperatures of 32.0°C and 22.7°C, respectively. Relative humidity varies seasonally, typically ranging between 52% and 90%, with an annual average of 78%. A summary of annual average climatic statistics for Canaã dos Carajás is provided in Table 5-1.

The rainy season extends from November to April, during which more than 80% of the mean annual precipitation occurs. The driest months occur between June through August and receive less than 20 mm of precipitation on average for a given month. The mean annual precipitation in the region is approximately 2,000 mm (Lara, 2025). A summary of monthly average precipitation statistics is provided in Table 5-2. Regional variability is present in all climate parameters, and a site specific timeseries of climate parameters should be developed in future studies.

Table 5-3 provides additional precipitation data from the Fazenda Surubim (ID: 649000), located 39 km from the Project Site; this was used for frequency analysis and hydrological calculations by ALB Engenharia. The station operated from 1984 to 2006, providing 22 years of data which is the most relevant currently available data for the Project. Although the gauge is no longer active, its long-term record near the site offers a reasonable basis for preliminary return period storm rainfall depths for various durations. However, given a changing climate, design parameters should be developed using current data. Uncertainty in return period estimates translates directly to uncertainty in water management infrastructure costs and should be addressed in future studies.

Table 5-1: Summary of Temperature and Relative Humidity at Canaã dos Carajás

Parameter	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann
Avg. Temperature (°C)	24.7	24.7	24.7	24.9	25.3	26	26.9	27.7	27.9	27.2	26.1	25.3	26.0
Min. Temperature (°C)	22.1	22	22	22.1	22	21.9	22	22.3	23	23	22.7	22.3	22.3
Max. Temperature (°C)	28.4	28.3	28.3	28.5	29	30.3	31.6	32.8	32.9	31.7	30.1	29.1	30.1
Relative Humidity (%)	86	86	87	86	82	69	56	51	60	71	80	84	74.8

Table 5-2: Summary of Precipitation at Canaã dos Carajás

Parameter	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann
Precipitation	269	268	266	205	116	20	10	7	31	92	164	214	1662
Distribution	16%	16%	16%	12%	7%	1%	1%	0%	2%	6%	10%	13%	-

Table 5-3: Return Period (years) Precipitation Depths (mm) at Fazenda Surubim (Adapted from ALB, 2025)

Return Period 1 in X yrs	2-Day	3-Day	7-Day	30-Day
2	104	121	178	387
5	136	155	241	471
10	160	181	289	535
20	184	215	352	619
50	217	240	400	683
100	241	266	448	747
500	297	325	559	895
1,000	321	351	607	958
10,000	402	346	766	1170

5.4.3 Climate Change

To support a high-level understanding of climate risks, projections from the World Bank were reviewed for the state of Pará (World Bank, n.d.). The following projections reflect the median (50th percentile) change for the 2080s (2070–2100) relative to the 1984–2014 baseline, based on scenarios SSP2-4.5, SSP3-7.0, and SSP5-8.5:

- Annual precipitation is projected to decrease by 7–15%.
- Annual average temperature is projected to increase by 9–18%.

Despite projected decreases in total annual precipitation, extreme precipitation events are expected to intensify. By the 2080s, the frequency of 1:100-year rainfall events is projected to increase by a factor of 2.98, and 1:20-year events by a factor of 2.2. However, these projections are subject to considerable uncertainty (World Bank, 2025).

The World Bank also highlights the risk of dry season intensification, where rainy seasons are projected to shorten while dry seasons lengthen (World Bank, 2025). The Planalto project is projected to have a relatively short mine life being less than 20 years and would not be impacted by late century climate risk; however, mine closure plans should consider the more variable climate projected.

5.5 Hydrology

5.5.1 Regional

The project area is located within the Verde River sub-basin, a tributary of the Parauapebas River, which is part of the Itacaiúnas River basin, belonging to the Tocantins-Araguaia hydrographic macro-region.

The Itacaiúnas River basin crosses urban areas, agricultural zones, mining regions, as well as protected areas and indigenous lands.

The Verde River sub-basin is elongated with a dendritic drainage pattern, it has good surface runoff under normal conditions.

5.5.2 Project Scale

The Project area is situated on two primary watersheds, as displayed in Figure 5-4. The catchments to the west of the project area drain to the headwaters of the Rio Verde, while catchments to the east of the primary divide drain to the Cupuzeiro. Approximately 1.6 km downstream of the water supply dam the Cupuzeiro discharges into the Rio Verde.

Generally, the dominant drainage pattern is dendritic, with flow originating from the SE and flowing NW. As the Cupuzeiro flows towards the Project Site, the alignment of the river will need to be diverted around the Homestead and Cupuzeiro Pit.

Once the Cupuzeiro and Verde River converge downstream of the Project Site, the flow continues north and NW for about 26 km until it flows into the Parauapebas River, the main watercourse in the region of the state. Its sources are in the Serra Arqueada, and its course cuts through the SE of Pará for about 350 km until it flows into the Itacaiúnas River, which in turn flows into the Tocantins, which flows towards the Amazon River in the vicinity of Belém.

Lara currently monitors flow rates weekly at five locations. Figure 5-3 displays two current monitoring locations, Station 1 and Station 2, on the Cupuzeiro Creek in the rainy season. The observed flow rates in the Cupuzeiro creek range between and average of 0.75 m³/s in the dry season and 1.42 m³/s in the wet season.

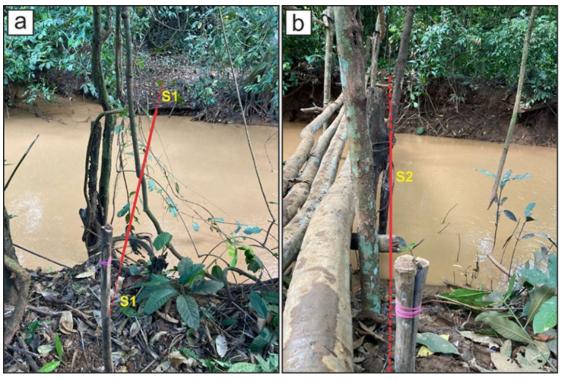


Figure 5-3: River cross sections of Stations 1 (a) and 2 (b) on Cupuzeiro Creek (Source: Lara 2025)

SRK Consulting (UK) Limited Planalto NI 43-101 – Main Report

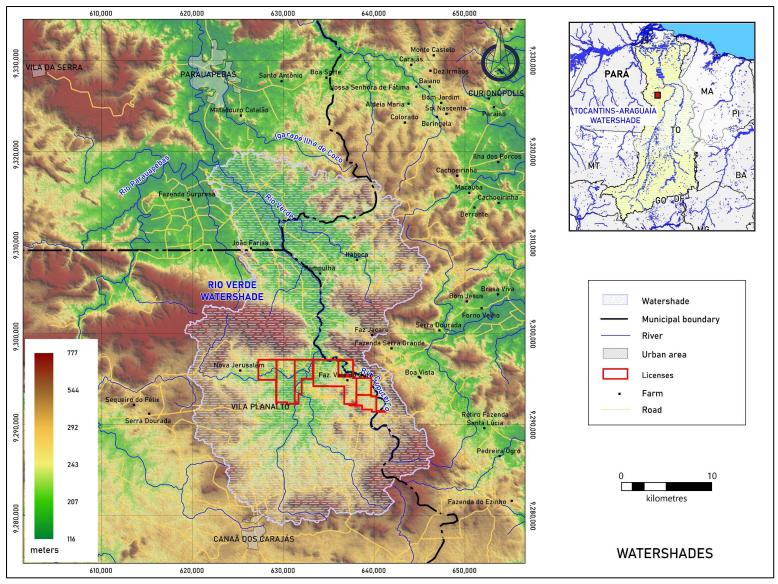


Figure 5-4: Hydrological Setting of Planalto Project (Source: Lara, 2025)

5.6 Infrastructure Setting

5.6.1 Road, Rail, Port

Parauapebas has daily commercial air services from Belem, the Para State Capital and Belo Horizonte in Minas Gerais State.

Canaã dos Carajás has a small general aviation airstrip, but no commercial air service.

The nearest rail services are those privately owned by Vale with the line starting from the S11D iron ore terminal in the western part of the Canaã dos Carajás municipality. This line connects with Parauapebas and passes through Marabá and out to the seaport of São Luis in Maranhão State

The nearest commercial-scale port facility is Vila da Conde, located adjacent to Belem, the state capital, is approximately 660 km to the north by road. The port facilities can also be accessed via barge on the Tocantins River, the nearest access to which is also in Marabá. Currently all the smaller copper concentrate producers in the region truck the copper concentrates in 30 t containers to Vila da Conde.

5.6.2 Power and Water

Three high tension power lines cross the northern part of the project area and are accessed from substations on the main Brazilian power grid located about 40 km north of the project near Parauapebas and Curionópolis.

The Tocantins River and its tributaries are of vital economic importance to the region, both as a source of fresh water and as a source of hydroelectric power. Downstream from Marabá, the Tucuruí hydroelectric dam expanded its capacity in 2005 to lift output to 8,370 MW.

ITEM 6. HISTORY

6.1 Historical Exploration

This section summarises the historical exploration work; further details are provided in the Lara Exploration Ltd NI43-101 Mineral Resource Report: Independent Technical Report on Mineral Resources Estimate for the Planalto Project, Canaã dos Carajás/Pará, Brazil, dated 03 July 2024. A link to this report is provided here.

6.1.1 Anglo American and Atlantica

During the early 2000s, Anglo American do Brasil Ltda (Anglo American) conducted systematic soil sampling which delineated four separate copper anomalies with soil copper values at >350 ppm Cu. These are now referred to as the Homestead, Divisa, Highway-E and Highway-W anomalies, as shown in Figure 6-1 (note only the BAIP Exploration Licence areas are shown).

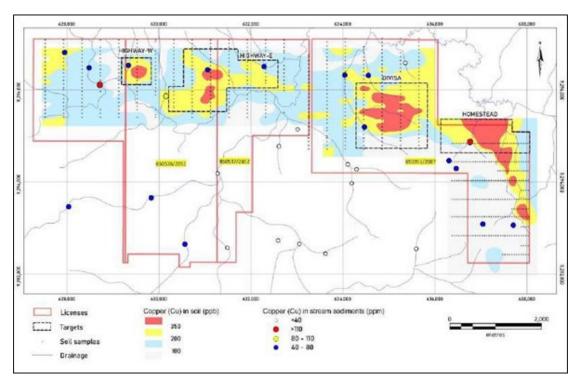


Figure 6-1: Anglo American soil copper survey (Source: GE21)

Airborne surveys were conducted by Anglo American with magnetics, radiometrics and electromagnetics being flown by their own inhouse aircraft-mounted system brought to Brazil. The Analytical Signal map derived from the magnetics data is shown in Figure 6-2. In the eastern part of the image, two distinct oval-shaped magnetic anomalies underly the Homestead and Cupuzeiro copper targets. There are also high signal responses in the west around the Highway and Sodré prospect areas.

Two diamond drillholes for a total of 591 m were completed by Anglo American in 2003.

During 2020 and 2021, five drillholes were completed by Atlântica do Brasil Mineração Ltda, the owners of the Atlantica Exploration Licence recently acquired by Lara (October 2025). Lara has not confirmed sampling and assay results from this drilling and the information was not included in the resource estimation. Further details are given in section 10.2.

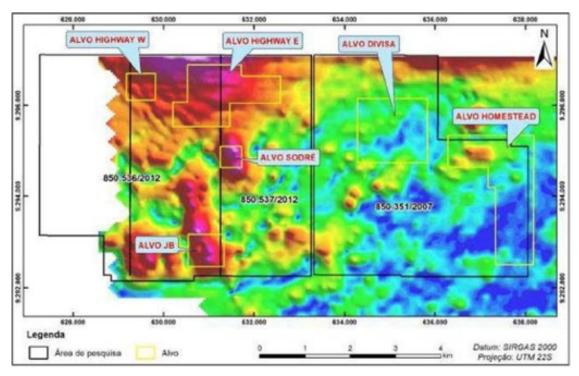


Figure 6-2: Anglo American airborne magnetics survey data (Source: GE21)

6.2 Previous Mineral Resource Estimates

The Mineral Resource Estimate used in this PEA, first announced in June 2024, remains current. There are no earlier publicly reported Mineral Resource Estimates.

ITEM 7. GEOLOGICAL SETTING AND MINERALISATION

7.1 Regional Geology

The Planalto copper gold project is located in the Carajás Province in the eastern part of the state of Para, Brazil (Figure 7-1).

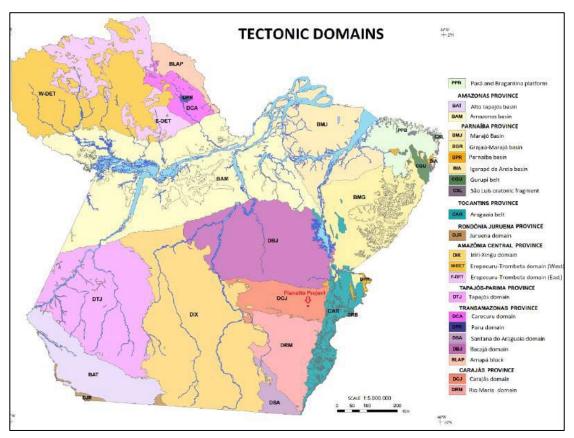


Figure 7-1: Carajás Province (Brazil) and Regional geological setting of Planalto project (Source: GE21)

The Carajás Province is approximately 500 km N-S by 400 km E-W, and is made up of Archean and Lower Proterozoic rocks divided into two main tectonic domains, with the Carajás Domain in the north and the Rio Maria Domain in the south. These are shown in Figure 7-2, (note the Planalto Project location is denoted with a black star).

The Carajás Domain is dominated by Neoarchean metamorphosed volcano-sedimentary sequences of the Itacaiunas Super Group of the Carajás Basin. In the immediate project area at the southeast of the Carajás Basin, these rocks have been included in the Grão Para Group and comprised by a thick succession of bimodal mafic and felsic volcanics and contain interbedded banded iron formations.

The Rio Maria Domain in the south is a typical Archean granite-greenstone terrain represented by rocks of the Andorinhas Supergroup. Several individual belts with east-west and northwest-southeast trends are mapped. The sequences of mafic and ultramafic magmas are covered by later metasedimentary clastic units.

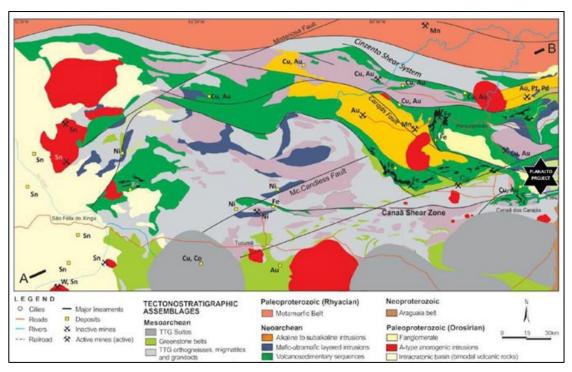


Figure 7-2: Geological units of the Carajás Province (Source: GE21)

7.2 Local Geology

Planalto project is located in a complex thrust fault zone at the southern edge of the Carajás Basin (Figure 7-3). Many of these thrust faults may be reactivated faults originally developed as splay faults emanating from the southern end of the regional NW-SE-orientated Carajás fault bisecting the Carajás basin.

Fault slices of felsic and mafic metavolcanics of the Parauapebas Formation occur in the eastern part of the project. Tonalites and granodiorites of the Campina Verde Tonalite occur in the central and western parts, foliated migmatitic orthogneiss, with lenses of amphibolite, occur in the south.

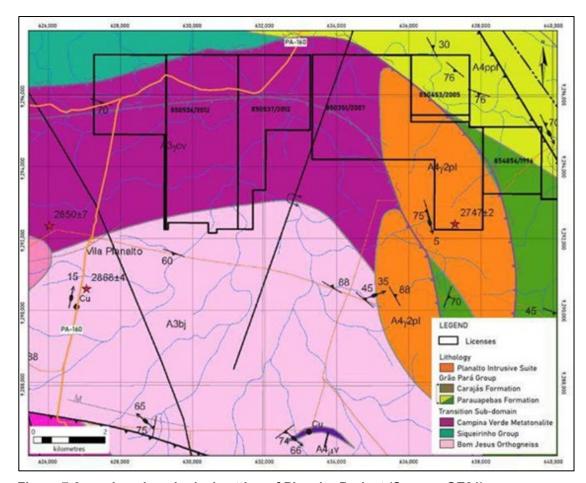


Figure 7-3: Local geological setting of Planalto Project (Source: GE21)

7.3 Deposit Geology and Mineralisation

Planalto copper mineralization is hosted in a thick pile (>700 m) of intensely altered, mafic-intermediate volcanics. The volcanics are generally weathered to a depth typically up to 15 m from surface with only a few outcrops of fresh rocks along the margins of the Cupuzeiro creek.

Host volcanics have compositions that vary between andesitic to dacitic. The volcanics have been affected by several episodes of veining. This veining is gently to tightly folded in proximity to mylonite zones.

Later veining consists of pinkish K-feldspar, epidote, carbonate and fluorite veins from a few millimetres to several tens of centimetres wide. Magnetite veins, from a few millimetres to several tens of centimetres wide, are common. Disseminated magnetite occurs throughout the volcanics but is most common within the chalcopyrite-rich zones.

The earliest hydrothermal alteration affecting the volcanics was a strong sodic alteration forming albite and locally scapolite. This was followed by strong potassic alteration with the formation of K-feldspar and biotite. A later propylitic alteration resulted in intense chloritization of earlier formed mafic minerals.

Chalcopyrite and pyrite are the main sulphide minerals observed and occur as disseminations, fracture fill and as irregular aggregates several centimetres in size.

7.3.1 Planalto Granite Complex

The Planalto Granite, occurs at the southern end of the mineralized area. The granite has a core zone of coarse grained strongly foliated biotite and hornblende bearing porphyritic K-feldspar-rich granite.

Mafic volcanics wrap around the western and eastern flanks of this granite.

7.3.2 Metasomatic Alteration

Surface mapping along the granite contact and core logging have shown that metasomatite zones occur both along this contact and within the mafic volcanics.

Drill core logging has identified a sub-horizontal, north-trending pipe-like body of metasomatic alteration infiltrating the volcanics for approximately 350m along the axis of the Homestead deposit at depth of 100-150m. Zones of strong chalcopyrite mineralization are located above and below this metasomatite body. Figure 7-4 shows the metasomatite body in relation to the mineralisation.

Fracture and breccia zones cut the metasomatite near the outer contact and in places these are partly cemented by chalcopyrite. These are interpreted as part of the fluid pathways that channelled copper-bearing fluids into the volcanic pile.

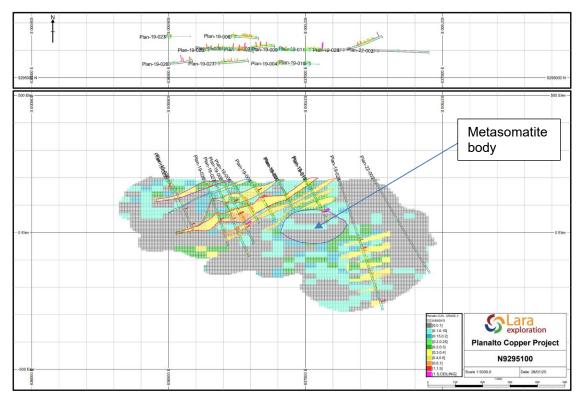


Figure 7-4: Section 9295100N showing Metasomite Body (Source: Lara)

7.3.3 Mineralisation

Drilling has identified that copper mineralisation is present along a north-south trend of more than 1500 m within a corridor up to 400 m wide from east to west. This trend is interpreted to cut across the regional NW-SE stratigraphic bedding or layering in the volcanics.

Potentially economic mineralisation, at >0.25% Cu, is interpreted to occur in stacked subparallel sheet-like structures that persist over the 1500 m north-south strike length along the mineralised zone. Individual zones vary from a few metres to up to several tens of metres thick.

Chalcopyrite is the main copper-bearing mineral recognised in the deposit and occurs as coarse millimetre-centimetre-size aggregates and fillings in irregular millimetre to centimetre-wide fractures (Figure 7-5).

Chalcopyrite also occurs as films in hairline fractures and as fillings in fractures in K-feldspar and epidote, quartz, calcite and fluorite veins, and also occurs as fine dissemination in strongly chloritised volcanics.

Pyrite is rarely seen in the drill core in the Homestead sector; however, it can constitute up to 5% of the rock in the Cupuzeiro zone and is abundant in the drill core within intervals with more >1% Cu.

Figure 7-5: Drill core with coarse chalcopyrite veining in volcanics (Source: GE21)

7.3.4 Petrography

Petrographic studies were carried out on thin sections from samples of drill core and outcrops from the Homestead and Cupuzeiro deposits and polished sections using reflected light on samples from Homestead. Work was undertaken at the University of East and Southeast Pará, University of Aracaju, Sergipe State and in Marabá, and the University of Pará in Belem.

Host rocks were described as fine grained aphanitic and porphyritic andesites, with some gabbro and diabase rocks in the Cupuzeiro deposit. Sulphides and magnetite are the main accessory minerals described.

The porphyritic rocks have phenocrysts of pyroxenes, plagioclase, K-feldspar, quartz or hornblende which are often strongly embayed and corroded due to hydrothermal alteration.

Hornblende and augite are altered to biotite which makes up a significant proportion of most rocks.

Plagioclase is often replaced by K-feldspar or sericite, epidote and clay minerals whilst pyroxenes are mainly altered to amphiboles.

Amphiboles and biotite have been altered to chlorite which makes up more than 15% of the altered volcanic rocks.

The host rocks to the copper mineralization are dominantly sheared meta- andesite in a pile of lava flows that have been subjected to strong metasomatic and hydrothermal alteration comprising:

- sodic alteration giving albite + scapolite ± tourmaline ± magnetite; overprinted by
- potassic alteration giving K-feldspar+ biotite ± quartz ± apatite ± magnetite; overprinted by
- later propylitic alteration giving chlorite, epidote and calcite,

The propylitic alteration and associated copper mineralisation occurred under brittle conditions resulting in veinlets and disseminations of chalcopyrite + magnetite ± pyrite. Early reflected microscopy work was conducted on samples from hole PDH18-003; this is shown in Figure 7-6.

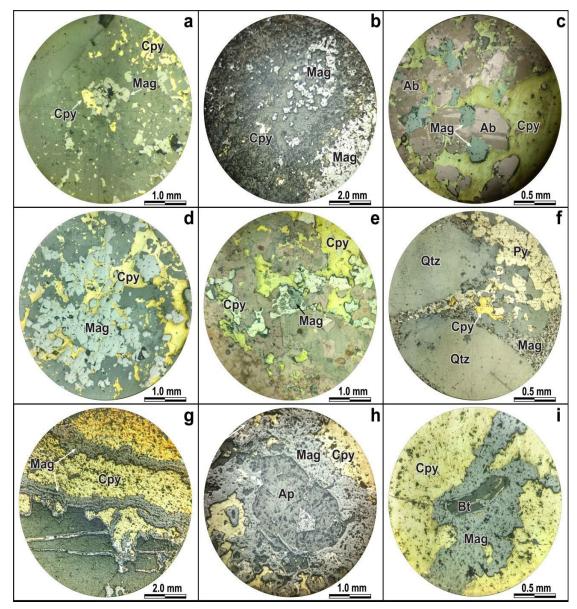


Figure 7-6: Reflected Light Photomicrographs (Source: GE21)

Image notes:

- a, b & d show disseminated magnetite and chalcopyrite which is often coarse grained (>0.5 mm)
- c shows albite overgrown by magnetite and coarse grained chalcopyrite
- e & f show pyrite being replaced by chalcopyrite
- g shows mm-scale veinlets of chalcopyrite cut by two thinner veinlets of magnetite
- h shows an apatite crystal crosscut by fractures filled with magnetite
- i shows biotite surrounded by magnetite within mm-scale chalcopyrite veinlet.

ITEM 8. DEPOSIT TYPES

Planalto is interpreted to be a volcanic hosted iron-oxide copper gold (IOCG) deposit, with similarities to other deposits in the Carajás Province and also elsewhere in the world. The key features of this type of mineralisation were defined in the late 1980s and early 1990s based on studies of Proterozoic deposits such as the Olympic Dam (Australia), Kiruna (Sweden) and Missouri (United States of America).

The Planalto copper gold deposit has several characteristics that are common with other IOCG deposits in the Carajás region including:

- Host rocks are metavolcanics developed in an Archean cratonic continental rift basin.
- Mineralisation is hosted in a complex fault system adjacent to the major basin-scale Carajás fault.
- Mineralisation is associated with early sodic metasomatic/hydrothermal alteration typified by albite and scapolite formation and followed by potassic alteration (K-feldspar and biotite)
- An alkaline granite complex is located immediately adjacent to the mineralization and has similar sodic and potassic alteration.
- The main copper-bearing mineral is chalcopyrite. Gold is also present, albeit in low concentration.
- Chalcopyrite shows a strong association with magnetite.
- Chalcopyrite mineralisation occurs both disseminated and in a stockwork pattern of veins and fine fractures.
- Mineralisation contains local concentrations of rare earth elements (hosted in allanite) and patchy molybdenite.

There are several key differences from other IOCG deposits in the Carajás region, however, including:

- Mineralization is associated with a set of stacked flat to gently west dipping lens-shaped structures.
- Absence of major breccia formation commonly described in many of the Carajás deposits.
- Overall copper grades at approximately 0.5% Cu are lower than reported for most other Carajás deposits, which range between 0.7% and 2.0% Cu.
- Gold concentrations in the chalcopyrite are significantly lower at an average content of 50 ppb Au, compared to 300-500 ppb Au in the majority of the Carajás deposits.

ITEM 9. EXPLORATION

9.1 Introduction

This section summarises the early exploration work completed within the project permits by Lara and Capstone. Further details are provided in the NI43-101 Mineral Resource Report entitled: Independent Technical Report on Mineral Resources Estimate for the Planalto Project, Canaã dos Carajás/Pará, Brazil, dated 03 July 2024. A link to this report is provided here.

9.2 Early Exploration

The following exploration work has been conducted by Lara and Capstone between 2016 and 2023:

- Regional 1 km-spaced soil sampling across the central and western parts of the Project, with follow up infill grids at Homestead, the Silica Cap, Sodre copper target, and Divisa, Highway-E and Highway-W targets.
- Lidar Topographic survey completed during 2023.
- Geological mapping.
- IP Survey: approximately 40 km of IP survey lines were completed covering the Cupuzeiro

 Homestead, Silica Cap and part of the Divisa copper target. No direct relationship
 between IP response and copper mineralization was observed; however, the chargeability
 response appears to highlight the increase in pyrite content in the Cupuzeiro trend.
- Channel sampling: undertaken between 2016 and 2017 and focused on sampling of
 exposure of saprolite crossing the anomalous soil geochemical copper zones. 17
 channels, with combined length of over 450 m, were cut across volcanic saprolite along
 roads and on fresh rock exposures in the creeks in the Homestead and Silica Cap targets.
 Significant copper intersections were obtained in both targets.
- Petrographic studies were conducted in 2019 and 2023 from drill core and outcrop.

ITEM 10. DRILLING

10.1 Introduction

Historical drilling on the property comprises of two diamond drillholes completed by Anglo American in 2003.

Lara became involved in the project in 2016 and undertook a small amount of drilling in 2017 and 2018.

In February 2018, Lara entered into an agreement giving Capstone an exclusive option to earn up to a 70% interest in Lara's Planalto Copper Project. In February 2022, Capstone raised its interest in the Project to 51% and become the operator funding the exploration work. The majority of the drilling on the project was funded and managed by Capstone before their withdrawal from the project in October 2023. Between 2017 to 2023, approximately 25,838 m from 85 diamond drillholes has been completed by Lara and its joint venture partners.

All drilling relating to the Mineral Resource area is illustrated in Figure 10-1.

10.2 Historical Drilling

10.2.1 Homestead

In 2003, Anglo American drilled on the Homestead copper soil anomaly:

• 2 diamond holes for 591 m.

Limited information is available for this early drilling; however, collar positions for these drillholes are well preserved by cement block markers and Lara has conducted twin drilling to support the validity of these data, which has therefore been used for resource estimation (Section 12.2). Lara's drilling is centred around these drillholes and their influence is now largely superseded.

10.2.2 Atlantica

Of the five historical holes drilled for 1,844 m in 2020-2021 only (DDALT21-003) intersected what Lara interprets to be the Silica Cap structural zone, located along the volcanic - metasomatized granite contact; this had an intersection of 1.5 m at 0.95% Cu. All other holes (except one which has no assay data) made narrow copper intersections some 200-800 m east of the Silica Cap trend as detailed in Table 10-1.

Lara has not confirmed sampling and assay results from this drilling and the information has not been included in the Mineral Resource estimation. The reported results highlight main intervals; unreported intervals will have lower grades.

Hole ID From То Interval Cu% DDATL20-001 159 163 4.10 0.44 DDATL20-001 194 197 3.00 0.39 DDATL20-001 202 203 1.00 0.39 DDATL20-001 225 231 6.00 0.30 DDATL20-001 303 1.50 0.56 305 DDATL21-002 173 174 1.10 0.28 DDATL21-003 125 127 2.00 0.23 DDATL21-003 274 276 1.50 0.95 DDATL21-004 110 1.00 0.25 111 DDATL21-004 122 129 7.00 0.30 DDATL21-004 141 144 3.08 0.57 DDATL21-004 0.22 161 1.00 162 DDATL21-004 248 249 1.00 0.41

Table 10-1: Summary of Atlantico Historical Drilling Results

10.3 Drilling by Lara Exploration and its Partners

10.3.1 Lara Early Drilling

In 2017 and 2018, using drilling contractor Mega Sondas Sondagem e Pesquisa, Lara drilled close to the Anglo American drillholes, on the same section line and stepping a short distance to the south and east:

5 diamond drillholes for 1,336 m.

10.3.2 Capstone Joint Venture

Between 2019 and 2023, Capstone funded and managed the majority of the drilling on the project using several drilling contractors (Servdrill / Energold / Pronorte / Rock Sondas / Major Drilling / Layne):

80 diamond drillholes for 24,502m

Most of the Lara / Capstone drilling was completed on the Cupuzeiro, Homestead and Silica Cap deposits which comprise the MRE presented in this report.

Of these drillholes, 12 (2,557 m) were completed on other prospects in Lara's Exploration Licence areas; notably, anomalous copper was intersected in Divisa (saprolite), Sodré and Highway Targets.

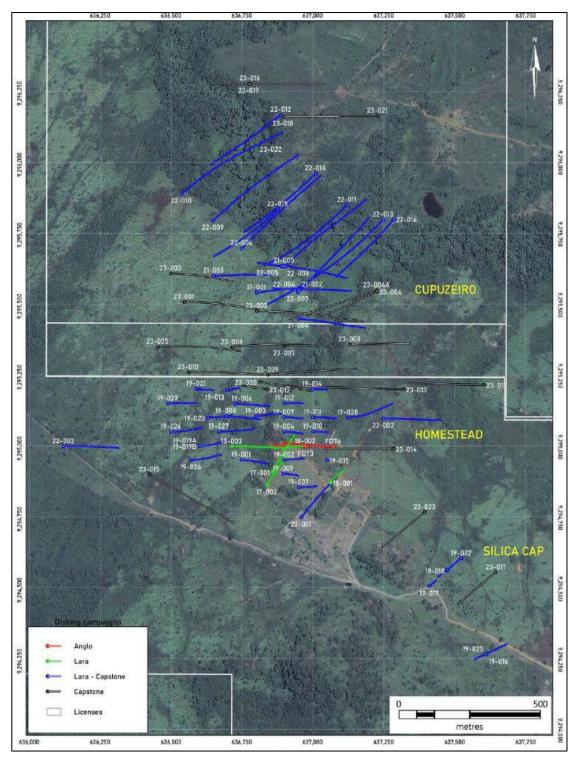


Figure 10-1: Drilling at Homestead-Cupuzeiro and Silica Cap Targets (Source: GE21)

10.4 Collar Position and Downhole Survey

Upon completion the drill collar position was marked by a PVC pipe preserved with a small cement block. All drillhole collars are picked up using an INCRA-accredited surveyor. The final location was surveyed by GPS Geodesic Navcon models RTK, NAVSF30340 and HIPER SR, into the WGS-840 (SIRGAS 2000) grid.

Downhole surveys were carried out typically every 10 to 30 m using a digital Reflex Maxibor 11, EZETRAC and the Gyro Path NSG principally to measure inclination and azimuth of the drillholes. The surveying was mostly supervised by drill contractors who used the services of the contractor DIPCORE S.A., based in Belo Horizonte. Several repeat surveys were conducted as a check on the quality of the work during 2021 and 2022.

10.5 Core Transport and Storage

All drillcore was securely transported from the site to the dedicated core shed facilities of PML in the centre of Canaã dos Carajás. Core transport was undertaken by both the drill contractors, usually at the end of each drill shift, and by employees of PML. The boxes were transported securely tied and covered.

10.6 Core Orientation

Where core orientation markings were available for each core run, the drill core was rearranged in core boxes to allow an orientation a line to be traced along the top of the core which would also serve as the orientation for the core cutting. Both the rudimentary bottom-weighted spear and the REFLEX ACT core orientation methods were utilised.

10.7 Core Recovery

Core recovery was recorded for each drilling run. In general, the core recovery in the mineralised zones appears to be good with an average recovery of 99% in the fresh rock, reflecting the generally competent nature of the lithologies.

The core recovery in the near-surface weathered zone is typically lower than in the fresh rock, with an average for the mineralised zone of 90%. This represents a very small percentage of mineralised core.

10.8 Core Logging

After drill core boxes are received in the core shed, the core boxes are placed on racks and each core run is checked for depth, run length and recovery information. The drill core was photographed both dry and wet.

Structural readings such as fractures, veins, shear zone orientations are measured relative to the core axis and recorded as Alpha and Beta angles in the database.

Magnetic Susceptibility readings were taken using a hand-held magnetic susceptibility meter KT-10 device on the core as standard practice up to 2021, with readings taken at 50 cm intervals down the core. Since then, down hole magnetic susceptibility readings have been obtained by magnetic susceptibility readings using crushed sample rejects returned by laboratories.

During geological logging the following information was collected: grainsize, texture, colour, mineralogy, geological contacts, lithology, geological structures (fractures, faults, veins and crenulations).

The content of alteration minerals such as biotite chlorite, K-feldspar, epidote and magnetite was estimated and visual estimates of percentage of pyrite and chalcopyrite were also recorded.

ITEM 11. SAMPLE PREPARATION, ANALYSES AND SECURITY

11.1 Sampling, Handling, Security and Preparation

Samples were prepared mainly from NQ diameter drill cores (47.6 mm core diameter). The typical sample length is around 2 m, taking account of changes in mineralization style, lithology, alteration and structure. The minimum and maximum sample lengths taken were 0.3 m and 5.1 m, respectively.

The sample selection and collection procedures adopted by PML are described below:

- Drill core is brought in by the drilling contractor team from the drill rig to core shed.
- The alignment and orientation of core in boxes are checked, and the depth lengths are marked.
- Core boxes are photographed (three boxes per picture) and logged.
- Sample intervals are marked with a pencil in the core box.
- Before sampling, the drill core is marked by a line drawn along the core at high angles to
 the foliation to orient the saw cut. The right side of the core, looking down the hole, is taken
 as the assay sample. The other half of the core is retained in the core box for future
 reference.
- When drill core has been marked with a down hole core orientation mark, the core is realigned and a line denoting the top of the core is drawn. This line is used to orientate the saw cut.
- Sample numbers are marked on the core box at the end of each sample.
- The core is cut lengthwise along the core axis. A geologist defines the position of the cut, and a geological technician performs the cutting.
- For weathered material, a spatula or a machete is used to split the sample into two subsamples along the drilling direction.
- Fresh rock cores are cut in half using a diamond saw flushed with water during sawing operation.
- Sample tags are inserted in the bags only after samples are bagged.
- After the samples are tagged and bagged, they are weighed.
- Batches are assembled, including QAQC samples, and sent to the laboratory. The standard batch size is 150 samples.

At all times, samples are in the custody and control of the Company's representatives until delivery to the laboratory, where samples are held in a secure enclosure until processing. The laboratories send a confirmation e-mail with details of samples received.

11.2 Laboratory Sample Preparation and Analysis

11.2.1 Laboratories Used

Drill core samples were prepared and analysed by a combination of the following three commercial laboratories: ALS Laboratory, Lima, Peru (ALS Lima), SGS Geosol Laboratory, Vespasiano-MG, Brazil (SGS Vespasiano) or Intertek Laboratory, Parauapebas, PA, Brazil (Intertek Parauapebas).

11.2.2 Assay Methodologies

The ALS Lima procedures for sample preparation included: recording the sample mass, crushing to a size of 70% passing <2 mm, splitting the sample in a riffle splitter, pulverising up to 250 g to a size of 85% passing <75 um, and creating a sub-sample for chemical analysis.

The SGS Vespasiano sample preparation procedures included: recording the sample mass, drying in sieve at 105°C, crushing to a size of 75% passing <3 mm, splitting the sample in Jones riffle splitter, and pulverizing up to 250 g to a size of 95% passing 150 mesh.

The Intertek Parauapebas procedures for sample preparation included: drying, crushing, sample splitting in Jones riffle splitter, and pulverizing to a size of 95% passing 150 mesh (0.105 mm).

Table 11-1 presents a summary of the analytical methods used by the laboratories selected by PML.

Laboratory	Methods Used	LAB Certification			
	AAS41B: Determination of elements by semi-total digestion - AAS — 0.25 g / 100 mL	ISO 9001:2015 for Geological			
SGS Vespasiano	FAA505: Determination of Au by Fire Assay - AAS – 50 g Fusion	Samples certified by ABS Quality Evaluation INC, Texas			
	ICM40B: Determination by Multi-acid Digestion - ICP OES / ICP MS LD Cu – 0.5 ppm	(USA)			
	ME-OG62: Ore Grade Elements - Four Acid ICP-AES LD Cu- 0.2 ppm				
ALS Lima	Cu-OG62: Ore Grade Cu - Four Acid	ISO 9001:2008 for Geological Samples partified by BSI Breeil			
	Au-ICP 21: Au 30 g FA ICP-AES Finish	Samples certified by BSI Brasil			
	ME-MS61: 48 elements four acid ICP-MS				
Intertek Parauapebas	GA01: Determination of Cu by Acid Digestion / Atomic Absorption. LD 0.01%.	ISO 9001:2015 certified by			
	FA50Au: Determination of Au by Fire Assay / Atomic Absorption. LD 5 ppb.	INMETRO Brasil			

Table 11-1: Laboratories and Methods used by PML

11.3 Density Determination

Density determinations on fresh rock were carried out using a combination of the Archimedes principal (hydrostatic) and water displacement methods.

Intertek Parauapebas undertook 914 hydrostatic density sampling measurements, based on a combination of whole and half core. Density samples varied between 15 and 50 cm in length and were collected at 10 m intervals downhole.

Lara technical staff undertook 627 water displacement density sampling measurements, based half core samples, selecting intervals that typically varied between 15 to 25 cm and collected at 3 m intervals downhole. During this programme, duplicate density samples (266) were also taken using the hydrostatic method. These were found to be, on average, slightly (2-3% relative) higher compared with the water displacement measurement; with differences potentially attributed to limitations associated with the relatively coarse (25 ml) scale on the measuring cylinder used to record volume displacement.

For density determination in the oxide (saprolite material), PML used the hydrostatic method, based on a combination of whole and half core. The procedure for taking hydrostatic density measurements for the saprolite included dying the core samples in an oven, and then wrapping in plastic film, before measuring the mass of the sample in air and submersed in water.

11.4 Quality Assurance / Quality Control Programmes

Quality Assurance (QA) is the process implemented to measure and assure the quality of the assay results and Quality Control (QC) refers to the results of the control samples included with the primary samples.

Analytical control measures included the use of certified reference materials (CRM), blanks, pulp and field (quarter core) duplicate samples for Cu. For Au analysis, assay QAQC was limited to CRM samples.

11.4.1 Blank Material

In total, 566 blanks were inserted at regular intervals within the sample stream for Cu during the 2017 to 2023 drilling programs. SRK has reviewed the results from the blank sample analysis and has determined that there is little evidence of sample contamination for Cu. A blank sample chart presenting the results for Cu is shown in Figure 11-1.

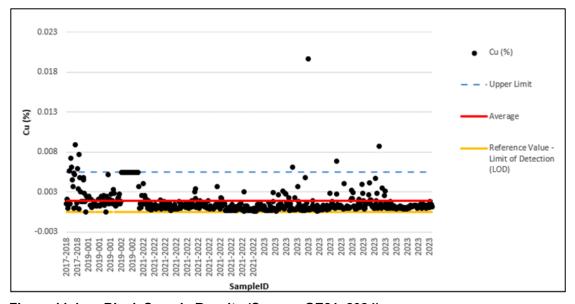


Figure 11-1: Blank Sample Results (Source: GE21, 2024)

11.4.2 Certified Reference Materials

A total of 18 different CRM were inserted at regular intervals into the analysis sample stream during the 2017 to 2023 drilling programs. These submissions resulted in 541 CRM results for Cu and 437 CRM results for Au.

The CRM were supplied by Instituto de Tecnologia August Kekulé Ltda (ITAK) and Ore Research & Exploration (OREAS) and a summary of the expected values, number of samples and result bias (%) for each CRM sample are shown in Table 11-2.

SRK has reviewed the CRM results and is satisfied that in general, with the exception of a limited number of anomalies and potential CRM sample swaps, they demonstrate a reasonable degree of accuracy at the assaying laboratory.

SRK notes that there is a 7-10% relative result bias (the difference between the laboratory CRM assay results and certified values for Cu) for ITAK 843 and ITAK 844. The number of samples associated with these results are low (approximately 2%) and other CRM submitted at a similar grade range performed better; accordingly, SRK has no associated material concerns. For Au, most CRM results show slight low bias relative to expected means (typically between -3 to -5% relative). Whilst the overall variance remains within acceptable tolerances; this should continue to be monitored during future sampling programmes.

Example CRM charts for Planalto for Cu and Au are presented in Figure 11-2.

Table 11-2: CRM Sample: Summary of Results

and the same campion camman, or recount									
	Copper Cl	Gold CRM							
CRM ID	Count	Expected Cu (%)	Result Bias%	CRM ID	Count	Expected Au (ppb)	Result Bias%		
ITAK 821	32	0.3622	-1.35	ITAK 607	19	248	6.66		
ITAK 823	43	0.874	3.09	ITAK 649	10	264	-0.23		
ITAK 843	6	0.796	6.73	ITAK 653	5	1032	6.14		
ITAK 844	5	0.323	9.84	OREAS151a	106	43	-5.53		
OREAS111	52	2.37	-0.92	OREAS 506	124	364	-2.44		
OREAS 151a	106	0.166	0.61	OREAS 507	112	176	-2.73		
OREAS 506	124	0.444	-0.72	OREAS 520	26	176	-4.66		
OREAS 507	112	0.622	-0.51	OREAS 524	35	1540	0.29		
OREAS 520	26	0.293	1.3						
OREAS 524	35	2.53	0.05						

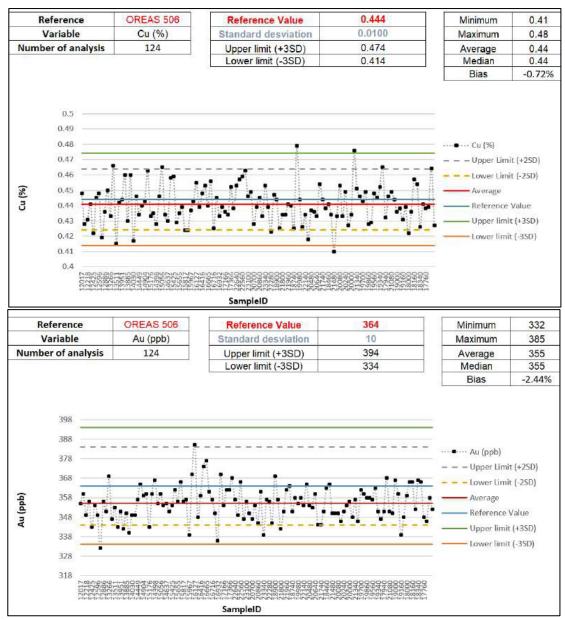


Figure 11-2: CRM Results for OREAS 506 for Cu and Au (Source: GE21, 2024)

11.4.3 Duplicate Samples

Duplicate samples were taken and submitted to the laboratory; both quarter core (field) duplicates and pulp duplicates.

Field Duplicates

In total, some 407 field duplicate samples were submitted for analysis. In general, excluding a small number of anomalous results, the duplicate samples show a reasonable correlation with corresponding original samples. A field duplicate chart showing combined results for Cu is presented in Figure 11-3.

Pulp Duplicates

In total, some 423 pulp duplicate samples were submitted for analysis, in general, as expected there are fewer anomalous results and the duplicate samples show a reasonable correlation with corresponding original samples. A pulp duplicate chart showing combined results for Cu is presented in Figure 11-3.

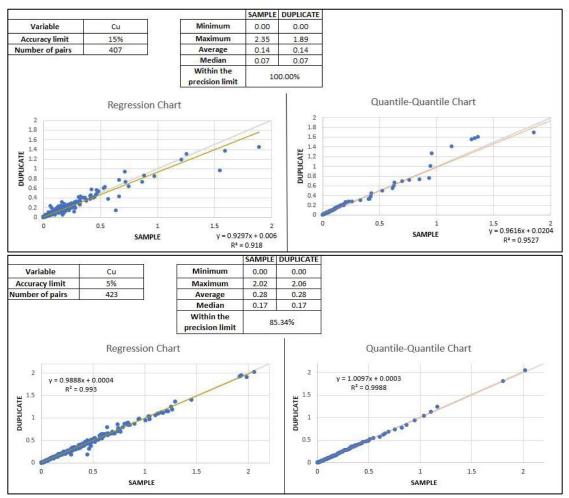


Figure 11-3: QAQC field duplicate analysis (top), pulp duplicate analysis (bottom) (Source: GE21 2024)

11.4.4 Assay QAQC - SRK Comments

Assessment of the available QAQC data indicates that, with the exception of a limited number of anomalies and potential CRM sample mix-ups, the copper and gold assay data for the drilling and sampling to date appears both appropriately accurate and precise.

ITEM 12. DATA VERIFICATION

12.1 Introduction

The exploration work carried out on the Planalto deposit was conducted by PML personnel and qualified subcontractors. PML implemented a series of routine verifications to ensure the collection of reliable exploration data. All work was conducted by appropriately qualified personnel under the supervision of qualified geologists. In the opinion of SRK, the field exploration procedures used at Planalto generally meet best industry practices.

Core logging, surveying, and sampling were monitored by qualified geologists and verified routinely for consistency.

Assay results were delivered by the primary laboratories electronically to PML and were examined for consistency and completeness.

PML implemented and supervised the assay QAQC programme for the drilling and sampling work at the Project. This included submission of CRM, blank pulp and field (quarter core) duplicate samples for Cu analysis to monitor laboratory performance. For Au analysis, assay QAQC was limited to CRM samples.

SRK's assessment of assay QAQC results is summarised in Section 11.4.

Database storage is managed by PML using Sequent MX Deposit.

12.2 Twin Drillhole Verification

Lara completed a twin drillhole (PDH18-002) to verify the historical sample assay and logging data pertaining to Anglo American historical drillhole FD-73.

In summary, comparison of the copper grades showed reasonable alignment between the twin and historic drillholes. Accordingly, the Company and GE21 accepted the validity of the Anglo American drilling and included this in the MRE database.

12.3 Verifications by GE21

GE21 was commissioned by Lara to undertake the July 2024 MRE which has been reviewed and summarised herein.

GE21 visited the Planalto site between 25-26 April 2024. During the site visit, GE21 collected two quarter core samples for independent duplicate check analysis. The quarter core samples were inserted in a sample batch containing a blank and a standard sample and transported by GE21 to the ALS Laboratory, Parauapebas, Brazil (ALS Parauapebas). Results of the original half-core samples within the Planalto database showed an acceptable correlation to the duplicate quarter-core check results from ALS Parauapebas, as illustrated in Table 12-1.

BHID SAMPLEID CU_PRC AU_PPM FROM TO Sample_ID_ Check Cu_Check Au_Check (m) (m) (%) (g/t)(%) (g/t)0.038 Plan-22-8 92.52 94.52 14372 0.433 20954 0.392 0.037 CRM OREAS 520 0.293 0.176 20955 0.302 0.179 Plan-22-8 94.52 96.45 14373 0.603 0.06 20956 0.649 0.053 Blank Sample 20957 0.001 <0.001

Table 12-1: GE21 Check assay results for samples in drillhole PLAN-22-008 (Source GE21, 2024)

12.4 SRK Site Visits

Between 12 and 15 May 2025, SRK visited the Planalto project site and sample storage facilities, had technical discussions and reviewed work undertaken by Lara, through its wholly owned subsidiary PML. The main purpose of the site visits was to:

- visit and inspect facilities at Intertek Laboratory in Parauapebas;
- witness the extent of the exploration work completed to date including verification of sampling locations;
- observe key geographical features;
- inspection of the core logging and sample storage facilities;
- review of geological interpretation and inspection of drill core;
- review of the sample preparation methodology;
- undertake an assessment of the logistical aspects and other constraints relating to the exploration property;
- assess the overall professionalism of the team and quantity and quality of on-site work;
 and
- ascertain the geographical and geological setting.

SRK was given full access to relevant data and conducted interviews with personnel to obtain information on the past exploration work, to understand procedures used to collect, record, store, and analyse exploration data.

12.5 Maintenance of Records

All records pertaining to exploration activities which are described in this report and inform the MRE are stored and are accessible as at the date of this report.

Furthermore, drillcore and sample reject material has been stored securely at the office, core yard and neighbouring warehouse in Canaã town; all these remain accessible.

12.6 Qualified Person's Opinion

The well documented working practices of PML, coupled with the QAQC work undertaken and reviewed by SRK, demonstrate that the project has been developed in a professional manner using an industry standard approach to Mineral Resource estimation.

SRK has confirmed that relevant exploration records collected PML are maintained and accessible at the date of this report.

Overall, the QP has sufficient confidence in the quality of the data, supported by the results of the QAQC results which confirm there is no evidence of material bias in the grade data.

The grade block model supporting the MRE presented in Item 14 is considered to be reliable for reporting at the MRE at the classification levels assigned.

ITEM 13. MINERAL PROCESSING AND METALLURGICAL TESTING

13.1 Summary of Available Information

Two testwork campaigns have been undertaken on the Planalto Copper Project to date, using samples selected and provided by Lara and Capstone (collectively referred to as the owners).

In October 2020, a preliminary study was undertaken by Blue Coast Metallurgy & Research, Vancouver, Canada (Blue Coast). The testwork was conducted on three samples representing different elevations in the Homestead deposit.

Testwork was carried out on the individual samples as well as a composite of all three and comprised:

- ore characterisation and mineralogy;
- BWi determination;
- 8 batch flotation tests including rougher and cleaner simulation; and
- a locked cycle flotation test with a primary grind P_{80} of 75 μ m, including gold recovery from the flotation concentrate.

A 2023 scoping level testwork campaign was carried out at Blue Coast on additional samples from the Cupuzeiro area. The scoping level study was carried out on the three samples: a Master Composite with a copper content of 0.46% Cu; a Low Grade (0.34% Cu) composite; and a High Grade (0.85% Cu) composite. The testwork comprised:

- ore characterisation and mineralogy;
- BWi determination;
- 15 batch flotation tests, including rougher and cleaner optimisation;
- 1 copper sulphide locked cycle flotation test; and
- 2 tests to establish a kinetic flotation response for the rougher and cleaner stages.

A 100 μ m primary grind was used in the Cupuzeiro testwork, resulting in slightly lower overall copper recoveries compared to those achieved in the Homestead testwork with a primary grind of 75 μ m. The results of the testwork were presented in the Blue Coast testwork reports PJ5324 dated 31 March 2021 and PJ5458 8 November 2023, respectively.

13.2 Preliminary Testwork (Homestead)

A mineralogy study was undertaken using QEMSCAN for modal mineralogy and liberation analysis. Ore characterisation testwork determined the BWi of the samples to establish the nature of the mineralisation for crushing and grinding. The flotation response of the copper sulphides was investigated to determine if a commercial grade copper concentrate could be generated. The copper concentrate was subject to gravity separation to investigate potential for a gold rich concentrate.

13.2.1 Sample Selection

Samples were selected by the Owners to represent different depths of the ore body. A graphical representation of the sample location within the deposit is included in the testwork report. Samples were selected from existing drill core intervals and the individual intervals are listed in Appendix A of the Blue Coast report (Ref PJ5324).

Upper Elevation

The sample intervals for the upper sample range from a minimum of 0.92 m in length to a maximum of 2.97 m in length with an average length of 1.77 m.

Copper grades in the upper sample range from a minimum of 0.06% Cu to a maximum of 1.91% Cu with an average of 0.46% Cu.

The Upper Elevation samples were formed into two composites (A and B) with individual copper grades of 0.50% and 0.51% Cu, respectively, and an average copper grade of 0.50% Cu.

Middle Elevation

The sample intervals for the middle sample range from a minimum of 0.92 m in length to a maximum of 2.05 m in length with an average length of 1.63 m.

Copper grades in the middle sample range from a minimum of 0.09% Cu to a maximum of 1.98% Cu with an average of 0.48% Cu.

The Middle Elevation samples were formed into two composites (A and B) with individual copper grades of 0.46% and 0.47% Cu respectively and an average copper grade of 0.46% Cu.

Lower Elevation

The sample intervals for the lower sample range from a minimum of 0.69 m in length to a maximum of 2.03 m in length with an average length of 1.40 m.

Copper grades in the lower sample range from a minimum of 0.09% Cu to a maximum of 1.14% Cu with an average of 0.54% Cu.

The Lower Elevation samples were formed into two composites (A and B) with individual copper grades of 0.58% and 0.58% Cu, respectively, and an average copper grade of 0.58% Cu.

Master Composite

A master composite was formed from the three individual samples. It has been assumed from the assay values of the composite that this was formed by using a weighted average of the three elevation samples based on the weight of samples in each one.

Grades in the master composite sample were 0.51% Cu and 0.04 g/t Au.

SRK Comment

The sample intervals are shorter than bench heights typically used in open pit mining and there is a risk that the samples are slightly higher grade than diluted mill feed; future testwork should include variability samples to test grade-recovery relationships and should aim for a bulk sample grades to be representative of diluted mill feed grades.

13.2.2 Mineralogy

Sized samples of the Master Composite (>75 μ m, 75-25 μ m and <25 μ m), as well as unsized samples of the three elevation samples, were submitted for QEMSCAN analysis. The predominant sulphide mineral contained across the four Planalto composites was chalcopyrite (1.5% to 2.2%), with minor amounts of pyrite, and trace amounts of galena, sphalerite. The majority of the non-sulphide gangue was comprised of quartz, feldspar, biotite, and chlorite.

The mineralogy study indicated that a primary grind with a P_{80} of 70-75 μm should be used but a concentrate regrind to a P_{80} of 15-20 μm would be required to liberate the chalcopyrite and achieve a clean copper concentrate.

No gold deportment studies have been conducted.

Further information can be found in section 7.3.

13.2.3 Comminution

No testing of rock strength or breakage energy was conducted.

BWi testing was carried out on the three elevation samples with a closing screen size of 106 μ m. The Homestead material is classified as Hard with a BWi of 18.5-20.0 kWh/t.

13.2.4 Flotation

The Master Composite was used to optimise conditions for upgrading of the chalcopyrite by froth flotation. The three elevation samples were then tested at the optimum conditions to verify the results.

A total of eight laboratory flotation tests and a single Locked Cycle test were carried out as part of the Blue Coast testwork and are reported in PJ5324. All rougher recovery values are plotted in Figure 13-2.

Reagents

Flotation was carried out at the pH from the grind calibration with standard copper sulphide flotation reagents, MIBC and a thionocarbamate. Tests with potassium amyl xanthate as an alternative to the thionocarbamate but not improvement in recovery was noted. Both reagents are industry standards and widely available.

Open Circuit testing

After the initial sighter tests (F-1 and F-2), a primary grind with a target grind P_{80} of 75 μ m with a concentrate re-grind targeting a P_{80} of 20 μ m was used and produced concentrate grades of over 30% Cu with open circuit recoveries of 84.5 – 87.0%. F-3 and F-4 trialled different collectors with no significant discernible difference.

Locked Cycle Testing

The final Homestead flotation test was a locked cycle test, (LCT-1). Locked cycle testing recirculates the cleaner tailings to the preceding step in the flowsheet, according to the flowsheet included as Figure 13-1, simulating the flowsheet conditions of the plant. It would be expected that the recovery of the copper will increase potentially at the expense of final concentrate grade.

Locked cycle tests are run for a series of iterations until the mass pull at each stage has stabilised. This normally takes five or six cycles. It is usual to average the results from the last two to three cycles as an approximation of plant flotation circuit performance.

The locked cycle testwork was undertaken using the master composite sample with a head grade of 0.48% Cu.

Figure 13-1 shows the locked cycle flowchart from the Blue Coast Homestead Report (Ref PJ5324).

The locked cycle testwork stabilised after Cycle 4 and the tests were continued to Cycle 6 which is normal operating procedure for laboratory locked cycle testing.

Locked cycle testing produced a final copper concentrate grade of 28.9% Cu with a copper recovery of 90.6% to final concentrate. Losses in the cleaner circuit were 2.4%. Copper rougher recovery was 93%.

Gold recovery to the final copper concentrate was 43.8%.

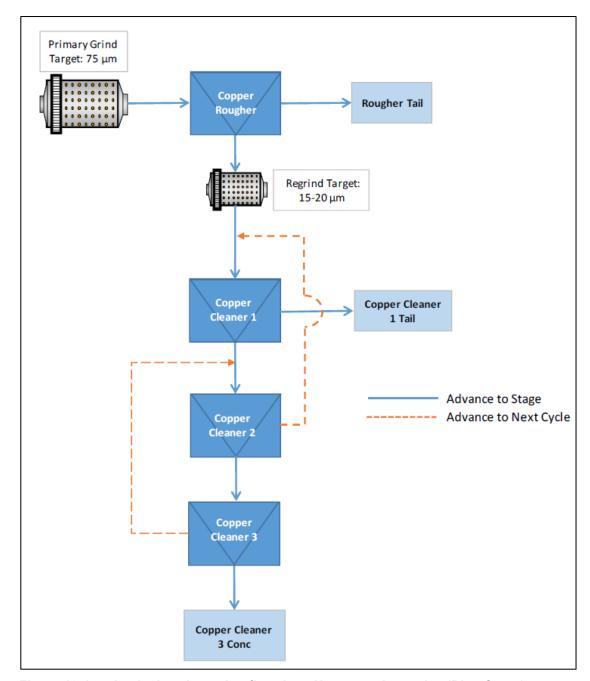


Figure 13-1: Locked cycle testing flowsheet Homestead samples (Blue Coast)

Rougher Flotation Residence Time

The rougher recovery values from the laboratory testwork have been plotted against time taken for the flotation test in Figure 13-2. Where cleaner testwork was carried out only single data points are available for the rougher recovery and are included accordingly.

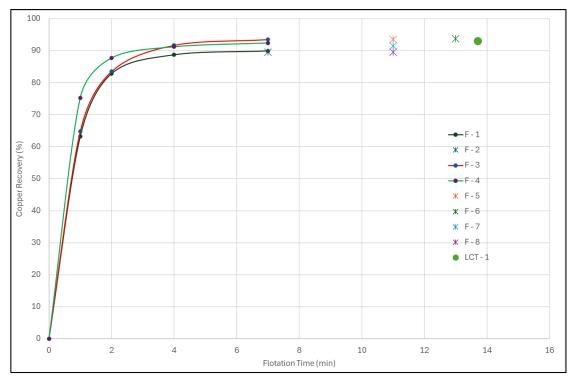


Figure 13-2: Homestead Rougher Flotation Kinetics

SRK Comment

The laboratory cell residence time needs to be scaled up to determine the plant residence time required to achieve the same rougher recovery. Normal practice is to use a multiplying factor of 2.5.

To achieve the 93% recovery required for an overall plant recovery of 91%, a rougher residence time of 10 minutes is required in the laboratory which would equate to a plant residence time of 25 minutes. This has been reflected in the flotation cell sizing in this PEA.

13.2.5 Gravity Concentration

Gravity concentration of the final copper concentrate on a Superpanner was used to try to generate a gold rich concentrate, and while gold grade could be increased, this was at the expense of gold recovery.

Comparing the mass yield and gold deportment to the three Superpanner products in Table 13-1 shows that almost 80% of the gold present follows the mass yield and is not concentrated by gravity and slightly over 20% of the gold was in a form that could be upgraded to the concentrate. This indicates that the majority of the gold is locked in the flotation concentrate, therefore gravity concentration was excluded from any future testwork programs.

Table 13-1: Super-panner gold concentration

<u> </u>	1 0	
Product	Wt Distn. (%)	Au Distn. (%)
Concentrate	0.3	21.8
Middlings	22.0	20.7
Tails	77.7	57.7
Total	100.0	100.0

13.2.6 Dewatering

No dewatering testwork was conducted.

13.3 Cupuzeiro Testwork

A second campaign of testwork was caried out on the Cupuzeiro part of the deposit in mid-2023 following a similar testwork program developed for the Homestead zone.

13.3.1 Sample Selection

A Low and High Grade composite sample with 0.34% Cu and 0.85% Cu were provided by Lara Exploration. A master composite of 0.46% Cu was formed from the two samples as a 25/75 blend of High Grade and Low Grade composites respectively to approximate the mill feed grade as understood at the time of the study.

The Sample Inventory & Characterisation provided in the Blue Coast report (Ref PJ5458) does not list the sample intervals, but both sets of samples are from half drill core, the sample weights per metre of core in the second round of testing are assumed by SRK be similar to those in the first round which were, on average 1.09 kg/m. On this basis, an analysis of the interval lengths has been carried out for the second phase of testing and the results are as follows.

Low Grade

The sample masses (and length) for the low grade sample range from a minimum of 1.41 kg (1.30 m) to a maximum of 2.97kg (2.73 m) with an average mass of 2.32 kg (2.13 m).

No individual interval assays are provided in the report.

High Grade

The sample masses (and length) for the high grade sample range from a minimum of 1.56 kg (1.43 m) to a maximum of 3.14 kg (2.88 m) with an average mass of 2.37 kg (2.18 m).

No individual interval assays are provided in the report.

SRK Comment

The sample intervals selected for the metallurgical testwork are regularly spaced along the drill holes. This gives representativity to the depth of the mineralisation. However, the intervals are shorter than a typical open pit mine bench height. There is a risk that the samples tested do not represent the diluted mill feed and that the resultant testwork results may not accurately reflect the ore characteristics or metallurgical response of the mineralisation.

Future rounds of testwork should allow for longer interval lengths, up to 5 m long, to be chosen for variability and bulk composite samples.

13.3.2 Mineralogy

Sized samples of the Low Grade and High Grade composites (>75 μ m, 75-38 μ m and <38 μ m) were submitted for QEMSCAN analysis.

The dominant sulphide mineral contained across the two grade composites was chalcopyrite (0.6% to 4.6%), with minor amounts of pyrite (<2%), and trace amounts of sphalerite and pyrrhotite. The majority of the non-sulphide gangue was comprised of quartz (13% to 20%), feldspar (14% to 36%), biotite (9% to 17%), and chlorite (9% to 24%).

The chalcopyrite liberation and grain size data was used to derive target initial primary and regrind sizes for the laboratory testwork. An initial primary grind P80 of 65 mm and regrind P80 of 25 mm was selected for both low and high grade composites.

13.3.3 Comminution

No testing of rock strength or breakage energy was conducted.

Two BWi tests were carried out, one on the High and Low Grade composite samples with a closing screen size of 106 μ m. The Cupuzeiro material is classified as Hard with an average BWi of 19.0 kWh/t.

13.3.4 Flotation

The Master composite was used for the flotation testwork with confirmatory testwork under the same laboratory conditions being carried out on the individual low and high grade samples.

The flotation testwork on the Cupuzeiro samples was based on the reagent scheme optimised in the Homestead Zone testwork and used the same grind sizes. Four elements were included in the testwork:

- rougher optimisation;
- cleaner optimisation;
- locked cycle testing; and
- kinetic flotation testing.

A total of 15 flotation tests, a single locked cycle test and two kinetic tests were carried out as part of the Blue Coast testwork and are reported in PJ5458.

Reagents

The Cupuzeiro flotation tests trialled sodium isopropyl xanthate as an alternate to the Aero 3894 thionocarbamate sulphide mineral collector used in the Homestead metallurgical testwork but no noticeable difference in recovery was seen. Methyl isobutyl carbinol (MIBC) was used as the frother. Both reagents are industry standards and widely available.

Rougher Optimisation

Copper rougher recovery is dominated by grind size and associated liberation of the chalcopyrite. Copper recovery displayed a reasonably linear relationship with primary grind size between a P_{80} of 118 and 50 μ m as shown in Figure 13-3.

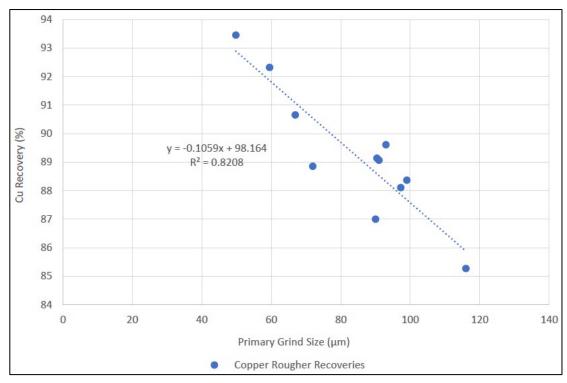


Figure 13-3: Primary Grind Sensitivity Copper Recovery vs Grind Size

These values are for the rougher recovery. A typical cleaner circuit will have a recovery of at least 95%, meaning that overall plant recovery can be expected to be 3-4% points lower than the rougher recovery.

During the Cupuzeiro testwork it was decided to increase the primary grind to a P_{80} of approximately 100 μ m to reduce grinding costs, despite the potential loss of recovery.

Based on Figure 13-3, using the same grind size as the Homestead Testwork where a P_{80} of 75 μ m was used for the Locked Cycle testing, the Cupuzeiro rougher recovery would be above 90%.

The alternative reagents trialled in the testwork had minimal impact on recovery.

The confirmation tests on the individual composites fell in line with the initial test on the master composite, achieving similar copper recoveries (88%) though the high grade composite produced a higher grade rougher concentrate (8% Cu) compared to the low grade composite (5% Cu). This is to be expected.

Cleaner Optimisation

The cleaner tests confirmed that a regrind is necessary to produce a final copper concentrate grading above 25% copper. A regrind of the rougher concentrate to a P_{80} of approximately 15 μ m enabled the production of a final copper concentrate of 27.5-29.6% Cu, which was in line with the results of the mineralogy investigation.

The confirmation tests on the Low and High Grade composites produced final copper concentrates with 27.8% Cu and 27.4% Cu, respectively.

Locked Cycle Testing

Locked cycle testing was carried out on a single sample, assumed to be from the Master composite (LCT-1 Head Grade 0.48% Cu) using the optimised rougher flotation conditions and the optimised cleaner flotation conditions with a primary grind P_{80} of 100 μ m and a target 15 μ m rougher concentrate regrind.

The locked cycle flowsheet was identical to the Homestead testwork shown in Figure 13-1.

The locked cycle testwork stabilised after Cycle 4 and the tests were continued to Cycle 6 which is normal operating procedure for laboratory locked cycle testing.

Locked cycle testing produced a final copper concentrate grade of 26.2% Cu with a recovery of 84.6%. Gold recovery to the final copper concentrate was 68.1%.

The reduced locked cycle recovery for the Cupuzeiro samples is most likely a direct result of running the tests at the coarser primary grind P_{80} of 100 μ m and utilising the same finer grind size as the Homestead testwork (P_{80} of 75 μ m) would see an increase in copper recovery.

Flotation Kinetics

Rougher and cleaner flotation kinetic tests were carried out on samples of the master composite using the locked cycle flowsheet and flotation test conditions. Flotation kinetics are required to calculate residence times in the various flotation stages.

The chalcopyrite is relatively fast floating in both rougher and cleaner applications.

Scale-up

All rougher recovery values are plotted in Figure 13-4. Where cleaner testwork was carried out only single data points are available for the rougher recovery and are included accordingly.

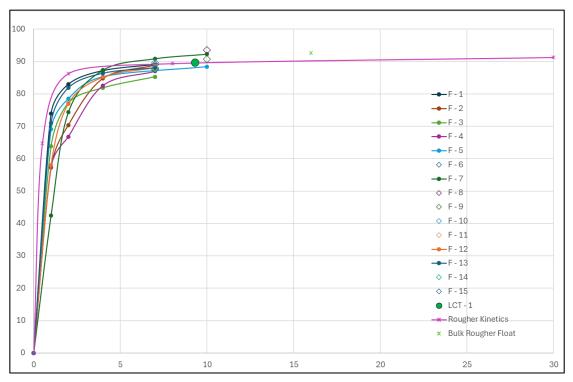


Figure 13-4: Cupuzeiro Laboratory Rougher Flotation Results

Batch Flotation Testing

The highest rougher recovery achieved was 93.5% after a batch cell residence time of 10 minutes in F-7. Many of the flotation tests were curtailed at 7 minutes with the rougher recovery still on an upward trend.

The F-7 rougher test had a primary grind of $60 \mu m$ and gave a recovery of over 93% after 7 minutes residence time in the laboratory flotation cell.

Locked Cycle Testing

The rougher recovery of the locked cycle testing averaged 89.7% for the last three cycles, with an average residence time of 9.3 minutes.

Losses to the cleaner tailings in the Cupuzeiro locked cycle testwork was notably higher than those in the Homestead testwork at 5.1% (vs 2.4%) despite retaining the 15 μ m rougher concentrate regrind size.

Rougher Kinetic Testing

An additional test introduced in the Cupuzeiro testwork programme was a rougher kinetic test which was allowed to run for 30 minutes, ultimately reaching 91.3% copper recovery. The bulk rougher test used to generate a large sample for the subsequent cleaner kinetic testwork achieved 92.7% recovery after 16 minutes flotation.

The highest rougher recovery achieved was 93.5% after a residence time of 10 minutes in test F-8 which was carried out with a grind size of $50~\mu m$. If the cleaner circuit losses of the locked cycle tests are applied to this rougher recovery, an overall plant recovery of 88.4% would be reached.

From the laboratory batch flotation time of 10 minutes it is conventional to scale up to plant residence time using a factor of 2.5 on the batch residence time, hence a plant residence time of 25 minutes should be used.

SRK Comments

The Cupuzeiro flotation testwork was carried out with a primary grind P_{80} of 100 μ m instead of a P_{80} of 75 μ m used in the Homestead testwork, despite evidence in both sets of testwork showing a drop in recovery of almost 4% with a coarser grind.

As the rougher concentrate re-grind size was maintained at 15 μ m, however, this does not explain the elevated losses in the cleaner circuit in the locked cycle testing. This should be the subject of further investigation in subsequent testing campaigns.

The plot of copper recovery vs primary grind size in the Cupuzeiro testwork report, as shown in Figure 13-3, indicates that reducing the primary grind from 100 μ m to 75 μ m would increase the copper recovery from 87.6% to 90.2%.

13.3.5 Dewatering

No dewatering testwork was conducted.

13.4 Summary of Testwork Results

Neither of the two metallurgical testwork campaigns conducted on composite samples from the Homestead and Cupuzeiro zones included ore characterisation which would allow accurate sizing and selection of the crushing and primary milling equipment.

A primary grind size of 75 μ m was utilised in the Homestead testing and rougher recoveries up to 93% were achieved.

The primary grind size was increased to 100 μm in the Cupuzeiro testwork and rougher recoveries of 88% were achieved. The Blue Coast testwork report (Ref PJ5458) noted that for the Cupuzeiro samples, reducing the primary grind size from 100 μm to 60 μm would increase rougher recovery from 88% to 92%.

Locked cycle testing on the Homestead and Cupuzeiro composites generated copper concentrates as shown in Table 13-2and Table 13-3, respectively.

Table 13-2: Homestead Locked Cycle Results

	Gr	ade	Distribution				
	Cu (%)	Au (g/t)	Cu (%)	Au (%)			
Final concentrate	28.9	27	90.6	43.8			
Cleaner tailings	0.10	0.04	2.44	6.97			
Rougher tailings	0.04	0.03	6.99	49.2			
Feed (back calculated)	0.48	0.06	100.0	100.0			

Table 13-3: Cupuzeiro Locked Cycle Results

	Gr	ade	Distribution				
	Cu (%)	Au (g/t)	Cu (%)	Au (%)			
Final concentrate	26.2	2.59	84.6	68.1			
Cleaner tailings	0.37	0.11	5.1	12.5			
Rougher tailings	0.05	0.01	10.3	19.4			
Feed (back calculated)	0.48	0.06	100.0	100.0			

13.5 Recommendations for Additional Metallurgical Testwork

The testwork carried out to date is at an appropriate level for a PEA / Scoping Study.

In order to move the Study forward to a PFS level, additional metallurgical testwork will be required and the samples selected for the testing need to represent the wider deposit and the mining method proposed.

Some of the testwork will require larger sized drill core and additional dedicated metallurgical drilling may be required.

13.5.1 Sample Selection

The testwork is based on a limited number of samples. Sample intervals for further testwork should take into consideration the mining methods and consist of continuous lengths of core commensurate with the mining method and pit bench heights.

The samples selected for the testwork carried out by Blue Coast comprised uniform lengths of drill core taken at regularly spaced intervals down the drill hole intersection, intended to provide spatial representation through the depth of the deposit. This method provides good spatial representation through the depth of the deposit. In the next rounds of testing samples should be selected in continuous intersections of core of at least 5m reflecting the practicalities of mining the deposit.

PFS testwork should include testwork to better define the physical characteristics of the ore, in particular the rock strength and crushability. In order to carry out the relevant tests, larger pieces of core, or lengths of full diameter core may be required.

13.5.2 Testwork

To advance the project to a PFS level, additional testwork is required to develop a more detailed understanding of the nature of the deposit and the metallurgical characteristics of the mineralisation.

Comminution

Testwork should include determination of the crushability of the ore as well as the specific breakage energy for the ore such that a semi-autogenous grinding (SAG) mill sizing can be carried out without recourse to large estimates and factors.

SAG mills treating hard material may be susceptible to critical size material (pebbles) building up in the mill. Determination of the build-up of critical material is practically impossible during metallurgical testing and development, even at pilot scale. Surveys of nearby operations should be carried out.

A comprehensive testwork program of high pressure grinding rolls (HPGR) testwork is recommended to enable a trade-off study to be undertaken between the use of HPGR and conventional SAG milling. HPGR will require specific metallurgical testwork, and large samples of drill core. Pilot testing, including recirculation of the oversize material is recommended.

HPGR have a maximum feed size of 70-90 mm and the feed will likely require three stages of crushing and as a minimum one stage of product screening. Determination of the crushing characteristics of a wide range of ore types should be undertaken in future metallurgical testing, including determination of the abrasion so that reasonable estimates of the wear rate and consumables required for the HPGR circuit can be derived to establish OPEX values as part of the trade-off.

Generation of concentrate regrind signature plots should be included to enable a range of fine regrind mills to be considered for a cost / benefit trade off at later stages.

If HPGR testwork is undertaken, additional signature plots using flotation concentrates generated from HPGR crushed samples for regrind mill selection should be considered as the micro-cracking that can be generated in the HPGR could be beneficial in the ultra-fine grinding of the rougher concentrates and may reduce the power requirements of the regrind mills.

Flotation

Flotation testwork should be carried out on any new drill intervals to confirm the proposed flotation circuit. Locked Cycle testing and stage kinetic testing are required.

Rougher flotation kinetic tests should be carried out at a range of primary grind sizes to confirm the target grind size.

Coarse particle flotation as a means of rejecting coarse barren waste should be included in future testing to enable a trade-off study to be carried out for the implementation of a coarse particle flotation circuit

Cleaner flotation kinetic tests should be carried out at a range of re-cleaner grind sizes to confirm the target grind size required for production of a final concentrate considering both copper grade as well as the removal of sufficient levels of deleterious elements such as fluorine. Cleaner flotation kinetics will be required to accurately size the cleaner flotation cells.

A robust concentrate grade vs recovery relationship should be developed to investigate the potential for increasing overall copper recovery by production of lower grade concentrates.

Pyrite

Approximately 18 Mt of the Cupuzeiro and Homestead deposit is elevated in pyrite with an average of approximately 1.3% of pyrite, based on visual logging of pyrite in core and estimation of pyrite content from Cu, Fe, and S analysis, assuming all available sulphur not used to form chalcopyrite is available for pyrite formation. Mechanisms for concentration of the pyrite and separate disposal of high pyrite tailings should be investigated in future rounds of testwork.

The Actalabs Mineralogy Study, completed as part of the Blue Coast Metallurgical Testwork Program (Project No. PJ5458) includes an analysis of the pyrite as well as the chalcopyrite liberation. The results indicate that over 85% of the pyrite grains are freely liberated at a grind size of less than 75 μ m. This presents an opportunity to produce a pyrite rich reject stream separate to the main flotation tailings.

Rougher flotation at neutral pH would allow recovery of the pyrite, along with the chalcopyrite to the rougher concentrate. Running the cleaner and re-cleaner circuit at an elevated pH of 9 or above would reject the pyrite to the Cleaner Tailings generating a Chalcopyrite concentrate free of pyrite. Only elevating the pH in the cleaners will keep the reagent cost down compared to operating the roughers at an elevated pH and rejecting the pyrite in the rougher tailings. Concentrating the pyrite into a dedicated tailings stream would also allow a dedicated disposal facility for the pyritic tailings material. Local opportunities to sell pyrite for sulphuric acid production should also be investigated.

Additional Testing

Larger scale pilot testing on one or more composites, representative of the major lithologies of the ore body should be carried out in order to generate large samples of concentrate and tailings for additional material characterisation including a dedicated assessment of tailings mineralogy and environmental considerations for storage.

Ore sorting may allow for rejection of barren waste from the RoM prior to grinding. Laboratory-scale testing can be carried out to determine if the ore is amenable to sorting.

To minimise the size and cost of any TSF dedicated to pyritic tailings, it may be beneficial to investigate the potential of processing the cleaner circuit tailings to generate a pyrite concentrate. This could help to minimise the storage volume required over the life of mine.

Whilst not critical, dewatering testwork of the concentrates and tailings could be part of the PFS metallurgical testwork.

13.5.3 Alternative Flowsheets

Mill feed classified as Hard, such as the samples tested to date, could benefit from the use of HPGR technology, which is an alternative to a semi-autogenous ball mill crusher (SABC) comminution circuit. HPGR testing is recommended in section 13.5.2, Additional Testwork, which, together with proper determination of the mill feed crushing characteristics would allow a multi-stage crush, HPGR and ball mill circuit to be developed as an alternative front end to the Planalto flowsheet.

The Hard nature of the Planalto mineralisation results in crushing and grinding having high power consumption and grinding media consumption and associated wear rates, increasing the OPEX of the plant. Removal of waste in as coarse a form as possible in the flowsheet can reduce these OPEX values. Coarse waste removal could be achieved by pre-concentration ahead of the mill through ore sorting, or by including a coarse gangue rejection circuit in the flotation plant.

Ore Sorting

Sorting of crushed ore can bring significant benefits to the capital expenditure and operating costs of a project by rejecting barren waste before grinding and beneficiation. The key to success is to determine if the ore body has heterogeneity and is amenable to upgrading of the crushed RoM without significant losses of the value metal. There are an increasing number of sensors that can be used to detect value and waste minerals. Amenability to sorting can be determined at a lab scale and should be included in future metallurgical testing.

Coarse Gangue Rejection

Several companies are promoting coarse particle flotation technology which could be integrated into a coarse gangue rejection circuit in the beneficiation plant. The purpose of this circuit would be to reject clean coarse material around the 1-3 mm size range before fine grinding takes place. The objective is to reject clean gangue so as not to lose value metals. The market leaders of this technology are Eriez, with HydroFloat.

13.6 Risks Associated with Metallurgical Testwork

The testwork carried out to date are commensurate with the level of study for a project at this stage of development. A reputable laboratory has been used and standard methods employed.

No testwork has been carried out which allows the determination of the energy required for breakage of the rock in the crushing or SAG Milling stages. Estimation of a SAG mill size has used ore hardness characteristics from nearby operations and using these to determine the size of the mills for the Planalto project. In the absence of comminution data, this is a reasonable approach. Future rounds of testwork should be used to fill these gaps in the project knowledge.

The two sets of flotation testwork completed to date have been carried out at different grind sizes. The grind size should be optimised in the next round of testwork. The recovery from the finer grind size is recommended as the basis for the plant performance and should be confirmed in the next round of testing.

ITEM 14. MINERAL RESOURCE ESTIMATE

14.1 Introduction

The following sections have in part been summarised from the NI43-101 Mineral Resource Report entitled: Independent Technical Report on Mineral Resources Estimate for the Planalto Project, Canaã dos Carajás/Pará, Brazil, dated 03 July 2024. A link to this report is provided here.

The Mineral Resource Estimation process was a collaborative effort between PML and GE21 geologists. PML provided GE21 with mineralisation wireframe interpretations for the Homestead and Cuperzeiro areas along with the exploration database. GE21 completed a base of weathering model and undertook geostatistical analysis, variography, selection of resource estimation parameters, construction of the block model and resource reporting cut-off grade calculation. SRK has reviewed all aspects of the MRE modelling, classification and reporting.

14.2 Estimation Domain Modelling

Estimation domain wireframes are primarily based on intersections with copper grades above 0.3%. For the Mineral Resource estimate, GE21 treated the deposit host rock, outside of the modelled mineralisation wireframes, as a separate low-grade copper domain. The mineralisation domains constructed for Homestead-Cupuzeiro are illustrated in Figure 14-1. These are multiple stacked lenses with a curviplanar geometry dipping approximately 20° WSW. The mineralised lenses are typically 20-40 m thick ranging from 3 m to over 50 m and the waste interburden is typically 10-20 m thick. The Silica Cap domain is planar, some 5-10 m thick, dipping 65° NE.

GE21 modelled a base of weathering surface based on a combination of drillhole logging information and changes in copper grade characteristics.

Grade estimation domains comprise the modelled mineralisation wireframes and host rock envelope. GE21 created a block model with parent block dimensions of $40 \times 40 \times 20$ m, with sub blocking to a minimum of $10 \times 10 \times 5$ m in the Leapfrog Edge software.

14.2.1 SRK Comment

SRK reviewed mineralisation in drillcore along with assay log sheets and agreed with the approach used in developing estimation domains. SRK's independent 3D interpretation of the drilling assay results supports the GE21 wireframes in terms of geological appearance, scale and continuity.



Figure 14-1: Domain model Plan View and Cross Sections, looking north (top) and west (bottom) (Source: GE21, 2024)

14.3 Grade and Density Estimation

GE21 undertook a statistical analysis to determine a composite length of 2 m for the subsequent stages of the estimate.

No high-grade capping was applied to estimation composites. Instead, high-grade outliers for Cu were handled using a distance threshold, where composite values > 4% Cu have a restricted influence during grade interpolation of 35 m; beyond this distance values are decreased to 4% Cu. No high-grade capping or clamping was applied for gold grades.

Cu and Au grades have been interpolated using Ordinary Kriging (OK) into the separate estimation domains with search ellipses orientated to follow the strike and dip of each respective domain using parameters related to the geostatistical continuity and sample spacing.

Bulk density was applied to the block model based on average values by grade estimation domain separately for Cupuzeiro and Homestead to reflect different pyrite contents at each. Average density values within mineralised zones range from a minimum of 2.79 g/cm³ up to a maximum of 2.95 g/cm³, and within the host rock domain from a minimum of 2.87 g/cm³ up to a maximum of 2.88 g/cm³. The average density from the host weathered samples (1.66 g/cm³) was applied to the weathered zone.

14.3.1 SRK Comment

The methods used to estimate grade and density are considered to be appropriate, SRK has visually validated the resultant modelled variables and has reviewed the statistical validation completed by GE21.

14.4 Classification

Block model quantities and grade estimates for the project were classified according to the CIM Definition Standards for Mineral Resources and Mineral Reserves (May 2014). Data quality, drillhole spacing, geostatistical parameters and the interpreted continuity of the mineralisation domains allowed GE21 to classify portions of the deposit in the Indicated and Inferred Mineral Resource categories.

The Indicated category generally relates to parts of the >0.3% Cu mineralisation model that are within 80-100 m of sample data whilst the Inferred category has been applied to blocks generally less than 150 m from sampling data (200 m at Silica Cap). Beyond this distance inside the >0.3% Cu domain and in all parts of the low grade host rock domain, blocks were assigned to the Inferred category. GE21 reported the Mineral Resource based on a copper equivalence (CuEq) cut-off grade, based on open pit mining and conventional milling and flotation mineral processing.

An example of GE21 classified block model is given in Figure 14-2.

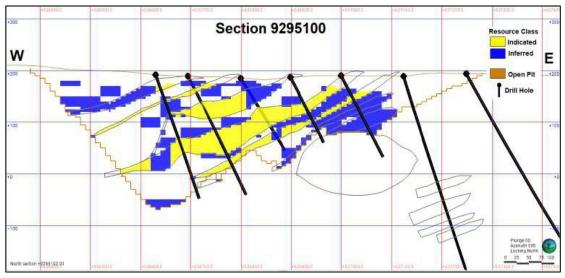


Figure 14-2: Cross-section through GE21 classified block model and MRE pit (Source: GE21, 2024)

14.4.1 Mineral Resource Reporting

Pit Optimisation

The Mineral Resource has been constrained to above an open pit shell defined using the following parameters:

- metal prices of USD 10,000/t for Cu and USD 2,200/oz for Au;
- a mining cost of USD 2.9/t mined;
- processing and G&A costs of USD 11.50/t processed;
- process recovery of 88% Cu and 68% Au;
- concentrate transport and selling costs of USD 208/t concentrate;
- commercial smelter terms:
 - o copper treatment and refining charges USD 59.5/t concentrate;
 - USD 0.06/t metal;
 - gold refining charge USD 4.47/oz.

Copper Equivalent

The copper equivalent calculation formula used to derive CuEq in the PEA is the same as that derived by GE21. SRK confirms that the different metal prices and technical economic parameters in the PEA, when compared to the GE21 MRE report, are such that there is no material difference in calculated CuEq factor and reporting cut-off grade.

The copper equivalent calculation is:

CuEq (%) = Cu% + ((Au Recovery x Au price x Payable Au)/(Cu Recovery*Cu price x Percentage Payable for Cu in NSR)) x Au g/t

Where: Payable Au = 90% and Percentage Payable for Cu in NSR = 83.7%.

The formula is simplified to:

 $CuEq\% = Cu\% + (Au g/t \times 0.578)$

Mineral Resource Statement

SRK has not modified the pit optimisation or cut-off grade reporting constraints to reflect higher long term metal prices prevailing at the effective date of the PEA. This maintains continuity with the maiden MRE which was originally dated 03 July 2024; the MRE statement is unchanged at the effective date of this PEA, being 15 October 2025.

Indicated and Inferred Mineral Resources are reported above a 0.16 equivalent Cu (%) cut-off grade.

The CIM Compliant Resource Statement for the Planalto Project is shown per deposit domain in Table 14-1.

Zone	Category	Resource (Mt)	Cu Grade (%) Au Grade (g/t)		Cu (Kt)	Cu (Kt) Au (Koz)	
Main Minanalia atian	Indicated	47.7	0.53	0.06	252.8	92	0.56
Main Mineralisation	Inferred	77.7	0.51	0.06	396.3	149.9	0.54
Host Rock Mineralisation	Inferred	76.3	0.2	0.03	152.6	73.6	0.22
Total	Indicated	47.7	0.53	0.06	252.8	92	0.56
	Inferred	154	0.36	0.04	548.9	223.5	0.38

Table 14-1: Planalto Project Mineral Resource Statement, 03 July 2024*

- 1. The MRE has been reported in accordance with the CIM Definition Standards on Mineral Resources and Reserves and National Instrument 43-101.
- 2. The QP responsible for the MRE is Martin Pittuck CEng, FGS, MIMMM(QMR).
- The MRE contains fresh rock domains only, the oxide mineralization is not reported.
- 4. The MRE is reported above a cut-off grade of 0.16% CuEq which reflects the technical and economic parameters assumed in the GE21 report and which also reflects the technical and economic parameters used in the PEA.
- CuEq = Cu grade plus Au grade multiplied by a factor based on [gold price USD 2200/oz x 68% recovery x 90% payability] / [copper price USD 10,000/t x 88% recovery x 83.7% payability].
- Tonnage is based on dry density.
- 7. The MRE is within Lara's tenement areas.
- 8. The MRE numbers have been rounded to reflect the estimate precision; this may cause summation errors which are not considered to be material.
- The PEA QPs and other authors are not aware of any legal, permitting, political, environmental, or other risks that could materially affect the development of the Mineral Resource.
- 10. SRK confirms that the different metal prices and technical economic parameters in the PEA, when compared to the GE21 MRE report, are such that there is no material difference in calculated CuEq factor and reporting cut-off grade.

14.4.2 SRK Comment

SRK agrees that the classification applied to the block model is reasonable. Overall, the data quality is demonstrated to be good, with high core recoveries and accurate grade estimates despite minor CRM accuracy concerns. SRK considers that there is good confidence in the data quality which can therefore support Inferred and Indicated Mineral Resources.

Drilling coverage is not consistent and many areas will require infill drilling to raise confidence in the geometry of the deposit models sufficient to achieve Indicated classification, hence the majority of the estimate is currently classified as Inferred.

^{*}Notes related to the Mineral Resource Estimate:

14.5 Exploration Potential

14.5.1 Oxide Mineralisation

The MRE pit shell includes a near-surface oxidised mineralisation zone sitting above the subcrop of the deposit. There is also an additional mineralised oxide drilling intersection at Sodre indicating a similar thickness and grade. Oxide mineralisation has not been classified as a Mineral Resource given that metallurgical testwork has yet to be completed on this material type and it will likely require a different processing method from that currently proposed for the sulphide mineralisation.

Based on exploration work to date, this oxidised material has the potential to add some 3.0 to 4.0 Mt at 0.4 to 0.5% Cu and minor gold values of approximately 0.02 to 0.05 g/t Au. Importantly, these potential quantities and grades are conceptual in nature, that there has been insufficient exploration or metallurgical testwork for it to be considered as a Mineral Resource. Furthermore, it is uncertain if further exploration will result in the Exploration Potential becoming a Mineral Resource.

14.5.2 Other Copper Targets

There is reasonable exploration potential in the southeastern extension of the Silica Cap zone based on copper in soil geochemistry and trench samples which indicate that copper-gold mineralisation identified in the Silica Cap zone trends southeastwards towards the Atlantica Exploration Licence. Five drillholes completed within the Atlantica exploration licence during 2020 and 2021 intersected chalcopyrite copper mineralisation possibly indicating similar albeit weaker mineralisation than encountered at Planalto; it is possible that better targeting may yet find higher grades in discreet structures such has encountered in Silica Cap, see Figure 14-3.

Whilst insufficient work has been completed to estimate Exploration Potential values for these locations, these drilling results and the associated copper in soil anomalies illustrate that there is potential to find additional mineralisation within 10 km of the Mineral Resource, inside the Planalto Project Exploration Licence package.

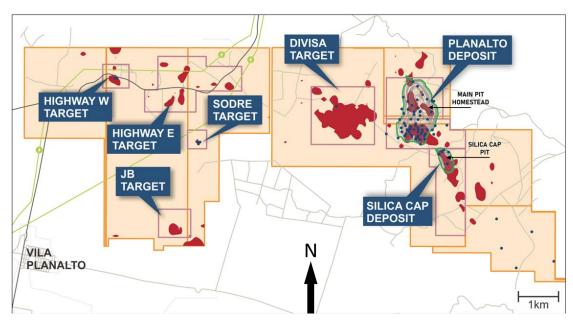


Figure 14-3: Planalto Project Exploration Potential

14.6 SRK Comments

SRK validated the grade estimates by reviewing the geological and spatial domaining, block model estimation parameters and completing a visual and statistical validation check on the models. Key observations and comments are outlined below:

- The southernmost 'Silica Cap' mineralisation domain and part of the host rock domain, at depth, in the southwest part of the block model, suffer from potential high-grade smearing, most notably for Au. This is not considered unusual for poorly drilled Inferred estimates and the relatively low MRE metal contribution (approximately 5-10% of Cu and Au metal) limits the overall significance; regardless, these are risks that will need to be addressed in future work.
- With regards to Mineral Resource Classification, SRK notes the presence of a small zone
 of less well drilled (>100 m coverage) Indicated material in the northernmost part of the
 block model that would currently be better suited to Inferred; however, given the overall
 relatively small contribution to the Indicated copper and gold metal (about 5%), this is
 considered to be of low significance.
- The southern part of the Homestead deposit currently has the best drilling coverage, some clusters of drilling achieve a 40 m spacing; however, this does not consistently provide high confidence in the thickness and continuity of the mineralised features. In SRK's opinion further infill drilling is recommended if there is a requirement to achieve better classification than Indicated.

14.7 Recommendations

Notwithstanding the comments above, SRK considers that in most areas the Planalto block model is a reasonable representation of the input drillhole data and the overall estimation techniques are not considered to materially bias the MRE Statement.

Lara has shared an early multi-stage drilling proposal for SRK's review; this involves a continuation of diamond drilling to add confidence to over half of the existing Mineral Resource with the expectation to extend the known deposits where possible, on the fringes of Homestead and Cupuzeiro and south of the Silica Cap deposit. The program is scheduled to take 9 months using 4 diamond drill rigs.

14.7.1 Infill Pushback 1&2

The key objective is to infill where there are significant gaps in the current drilling coverage and to test open-ended parts of the model within the central and southern parts (pushbacks 1 and 2 as shown in Section 16.1) of the Cupuzeiro-Homestead deposits.

The intention is to achieve approximately 100 x 100 m intersection spacing as much as possible. Individual drillholes have been proposed which account for current land access restrictions and which are oriented to fill the irregular gaps left from existing variable drill line orientations and opposing drillhole directions; 39 drillholes are planned for a total of 14,200 m.

SRK expects that 100 x 100 m coverage should be sufficient to support Indicated Mineral Resources providing mineralised drillhole intersections are sufficiently well defined and are continuous with defendable orientations though several drillholes in a 3D sense. Should the mineralisation be less continuous resulting in low confidence in the model, then further localised infill drilling may be required to achieve Indicated classification.

14.7.2 Silica Cap Extension

A second objective is to part-infill the Silica Cap deposit in the pit and substantially extend drilling coverage southwards exploring a possible strike extension following the copper-in-soil anomaly towards and into the Atlantico area. A 200 x 100 m intersection coverage has been used to layout drilling extending some 1,400 m south of the current Silica Cap pit design. This is expected to confirm and add to the existing Inferred Mineral Resource in this area; 16 drillholes are planned for a total of 3,200 m.

14.7.3 Atlantica Exploration

Finally, there is some drilling budget allocated to the recently added Atlantica area where additional mapping and surface sampling are necessary before formally proposing a drillhole layout. A budget of 2,100 m drilling has been allocated for scout drilling in this area.

14.7.4 Block Model Considerations

Aspects of the block modelling that would benefit from future adjustment include:

- Review estimation parameters to reduce the potential for overestimation of high-grade (notably for Au), particularly in the Silica Cap and host rock domains.
- In general, for all domains, adjustment is recommended for future estimates to use a higher number of samples, to ensure local block grades are robust.
- Adjust the classification methodology for Indicated Mineral Resources, to be more strictly limited to better drilled areas (<50-100 m). This is particularly relevant for peripheral (northern) areas where mineralisation is thinner and hence geometry and grade are potentially at greater risk of change over shorter distances.

14.7.5 Other Data Considerations

- A consistent and accurate quantification of pyrite will be required to better understand the amount of sulphide in the mill feed to assist with the management of diverting pyrite rich tailings to the pyrite storage facility.
- Geochemical and mineralogical characterisation of mineralised and waste intersections will be important to add confidence to the storage plans for stockpiles, waste and tailings.

ITEM 15. MINERAL RESERVE ESTIMATE

15.1 Mineral Reserve Statement

The technical work completed for the Planalto project to date is preliminary in nature; it is not yet to PFS level and therefore a Mineral Reserve cannot yet be stated for the project.

Furthermore, the PEA includes Inferred Mineral Resources that are considered too speculative geologically to have the economic considerations applied to them that would enable them to be categorised as Mineral Reserves.

ITEM 16. MINING METHODS

16.1 Mine Planning

The Planalto project (Figure 16-1) consists of two pits, the Main Pit containing the Cupuzeiro and Homestead mineralization and the smaller Silica Cap pit located to the SE. The mining operation considers a combination of 6.5 m³ hydraulic excavators (CAT 395, etc) and 40 t road trucks for ore mining, and a combination of 15.0 m³ hydraulic shovel (Liebherr R 9250, etc) and 100 t (CAT 777, etc) haul truck for waste rock mining. The ultimate pit designs were derived from mine optimization using Whittle analysis. The planned annual average RoM production rate is 8.0 Mt at a copper grade of 0.45%, with a total of 266 Mt of waste rock to be moved over the 17-year life of the project.

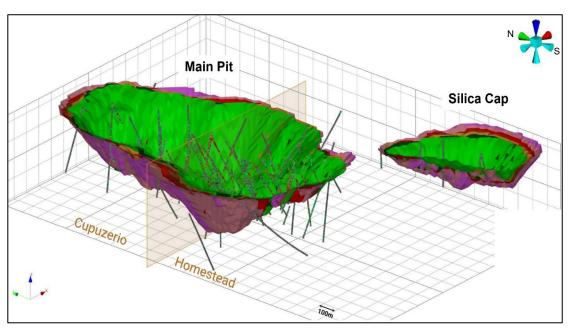


Figure 16-1: Planalto project looking NE (source: Lara)

16.1.1 Pit Optimisation

Several nested pit shells were generated using GEOVIA Whittle software with the pit optimization algorithm, for a range of revenue factors related to the product price. The pit optimization parameters and results are presented in Table 16-1.

The optimal pit shell was selected through marginal analysis (Table 16-2 and Figure 16-4). Larger pit shells that have modest increases in net present value (NPV) for large increases in rock tonnage are usually avoided. For the Planalto project, Pit 25 was selected, corresponding to a Revenue Factor (RF) of 0.88.

The pushbacks were selected from the nested pit shells taking into consideration the practical mining constraints, such as minimum bench width. As illustrated in Figure 16-3, three pit shells were chosen for the Main Pit and one for the Silica Cap to delineate the pushbacks. An additional pushback (Pit 4) could be incorporated to target the high-grade zones during the initial years of operation.

Table 16-1: Pit Optimization Parameters (Lara, 2025)

Category	Item	Unit	Value
Financing	Metal price (Cu)	USD/t	9,500
	Metal price (Au)	USD/oz	2,000
Mining	Average mining cost	USD/t mined	2.95
	Grade control	USD/t processed	0.30
	Mining recovery	%	95.0
	Mining dilution	%	5.0
	Slope Angle Oxidate	0	32.0
	Slope Angle Sulphide	0	52.0
Processing	Cupuzeiro		
	Copper recovery	%	89.0
	Total processing cost + G&A		
	>0.21% CuEq (no rehandle)	USD/t processed	12.75
	<0.21% CuEq (USD 1.0/t rehandle)	USD/t processed	13.75
	Concentrate grade - Cu	%	26.0
	Homestead		
	Copper recovery	%	91.0
	Total processing cost + G&A		
	>0.20% CuEq (no rehandle)	USD/t processed	12.75
	<0.20% CuEq (USD 1.0/t rehandle)	USD/t processed	13.75
	Concentrate grade - Cu	%	29.0
	Gold recovery	%	68.0
	Concentrate grade Au	oz/t	0.075
Smelter	Payable metal Cu	%	-1%
	Payable metal Au	%	90.0
	Treatment cost	USD/t concentrate	60.0
Refining	Gold refinement cost	USD/oz metal	5.0
	Copper refinement cost	USD/lb metal	0.06
Transportation	Transportation	USD/t concentrate	
Royalties	Royalty (CFEM) Cu	% of revenue	2.0
	Royalty (CFEM) Au	% of revenue	1.5

Table 16-2: Pit Optimization Results (Lara, 2025)

Pit	Marginal	Cupuzeiro Sulphide			Home	Homestead Sulphide			otal > Co	G	Waste	Tot. Rock	Strip
#	Cost D/t	Mt	Cu %	Au g/t	Mt	Cu %	Au g/t	Mt	Cu %	Au g/t	Mt	Mt	Ratio
1	3.800	7,1	0,84	0,10	0,7	0,90	0,14	7,8	0,85	0,10	6,9	14,7	0,89
2	3.990	7,5	0,83	0,10	0,8	0,89	0,14	8,3	0,83	0,10	7,6	15,9	0,92
3	4.180	8,1	0,81	0,10	1,1	0,83	0,13	9,2	0,81	0,10	8,8	17,9	0,96
4	4.370	8,4	0,81	0,10	1,5	0,80	0,12	9,9	0,81	0,10	10,5	20,4	1,07
5	4.560	11,0	0,74	0,09	7,9	0,56	0,07	18,9	0,66	0,08	18,1	37,0	0,96
6	4.750	12,2	0,72	0,08	8,8	0,55	0,07	21,0	0,65	0,08	20,3	41,2	0,97
7	4.940	12,3	0,71	0,08	12,2	0,54	0,06	24,5	0,63	0,07	24,1	48,6	0,98
8	5.130	13,1	0,70	0,08	13,4	0,53	0,07	26,4	0,62	0,07	26,7	53,0	1,01
9	5.320	13,3	0,70	0,08	14,3	0,53	0,06	27,6	0,61	0,07	27,8	55,4	1,01
10	5.510	13,9	0,69	0,08	15,7	0,52	0,06	29,5	0,60	0,07	29,9	59,4	1,01
11	5.700	14,2	0,68	0,08	21,1	0,50	0,06	35,3	0,58	0,07	38,0	73,2	1,08
12	5.890	15,1	0,67	0,08	22,7	0,50	0,06	37,7	0,57	0,06	41,4	79,1	1,10
13	6.080	15,2	0,67	0,08	25,4	0,49	0,05	40,7	0,55	0,06	44,4	85,0	1,10
14	6.270	18,6	0,63	0,07	27,9	0,48	0,05	46,4	0,54	0,06	53,8	100,1	1,16
15	6.460	31,4	0,56	0,06	42,0	0,46	0,05	73,3	0,50	0,05	107,8	180,9	1,47
16	6.650	34,1	0,55	0,06	47,6	0,46	0,05	81,7	0,50	0,05	123,5	205,0	1,52
17	6.840	34,4	0,55	0,06	49,2	0,45	0,05	83,7	0,49	0,05	127,8	211,3	1,53
18	7.030	40,3	0,54	0,06	50,8	0,45	0,05	91,0	0,49	0,05	149,4	240,2	1,65
19	7.220	45,6	0,53	0,06	51,7	0,45	0,05	97,2	0,49	0,05	168,2	265,2	1,73
20	7.410	45,8	0,53	0,06	53,6	0,45	0,05	99,4	0,49	0,05	174,5	273,7	1,76
21	7.600	47,8	0,53	0,06	57,3	0,45	0,04	105,1	0,48	0,05	188,5	293,4	1,80
22	7.790	49,7	0,52	0,06	59,4	0,45	0,04	109,1	0,48	0,05	204,2	313,0	1,88
23	7.980	50,9	0,52	0,06	60,3	0,45	0,04	111,2	0,48	0,05	209,7	320,7	1,89
24	8.170	52,2	0,52	0,06	60,6	0,45	0,04	112,8	0,48	0,05	216,1	328,6	1,92
25	8.360	68,9	0,51	0,06	61,6	0,45	0,04	130,5	0,48	0,05	292,8	423,0	2,25
26	8.550	69,7	0,50	0,06	63,1	0,45	0,04	132,8	0,48	0,05	299,2	431,7	2,26
27	8.740	71,6	0,50	0,06	63,9	0,45	0,04	135,5	0,48	0,05	314,9	450,1	2,33
28	8.930	72,6	0,50	0,06	64,7	0,45	0,04	137,3	0,48	0,05	322,4	459,4	2,35
29	9.120	72,8	0,50	0,06	65,8	0,45	0,04	138,6	0,48	0,05	327,9	466,1	2,37
30	9.310	73,1	0,50	0,06	66,6	0,45	0,04	139,7	0,48	0,05	333,0	472,3	2,39
31	9.500	73,5	0,50	0,06	67,0	0,45	0,04	140,5	0,47	0,05	337,3	477,4	2,41

Sources: Lara Exploration, 2025

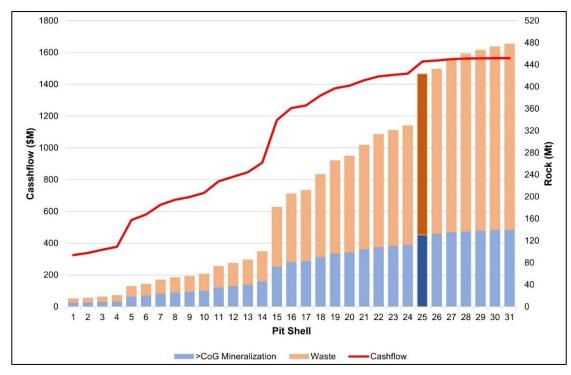


Figure 16-2: Pit Optimisation Results (Lara, 2025)

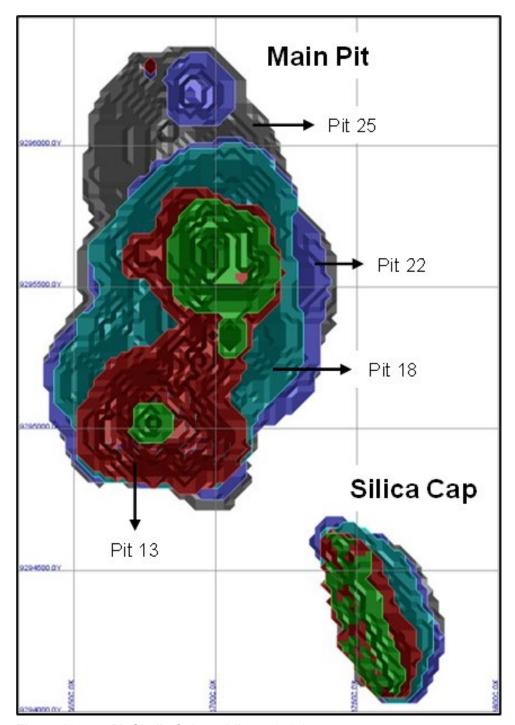


Figure 16-3: Pit Shells Selected (Lara, 2025)

16.1.2 Open Pit Design

A detailed design was completed on the selected pit shell, including access points and ramps. The geometrical assumptions adopted are:

- Bench face angle: 70° (hard rock) and 50° (fresh rock).
- Berm width: 4 m.
- The ramp width is 26 m in the Main Pit and 20 m in the Silica Cap Pit, narrowing to 17 m and 10 m, respectively, at the final benches.

- Maximum ramp gradient of 10%.
- Minimum operational work width of 40 m.

Figure 16-4 and Figure 16-5 show the pushbacks designed for the Planalto project.

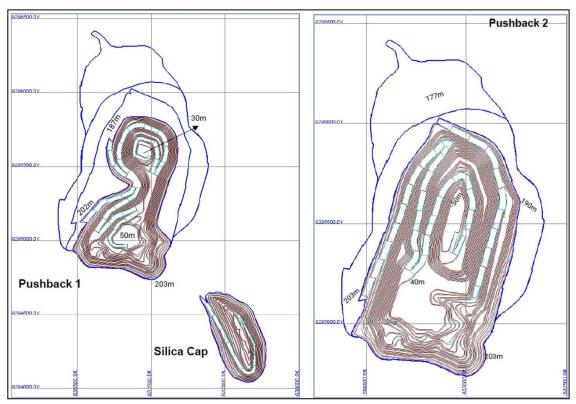


Figure 16-4: Silica Cap, Pushback 1 and Pushback 2 (Lara, 2025)

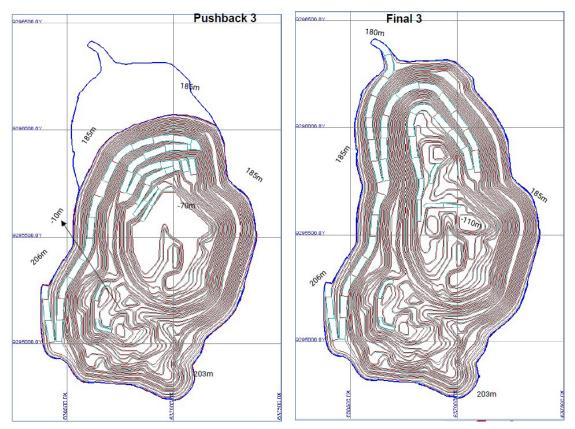


Figure 16-5: Pushback 3 and Ultimate Pit (Lara, 2025)

16.1.3 Life of Mine Plan and Mine Schedule

The planned annual average RoM production rate is 8.0 Mt at a copper grade of 0.45%, with a total of 266 Mt of waste to be moved over the 17-year LoM. The production schedule is presented in Table 16-3. The mining sequence is presented in Figure 16-8 and Figure 16-9.

The schedule is designed to align with the plant's production capacity and optimize NPV, ensuring efficient operational practices. Production scheduling was developed in GEOVIA Whittle software using the mining phases created during the design. The LoM production plan was developed annually. Several scheduling iterations were run with the objective of identifying and selecting the best scenario.

Contact dilution was estimated by applying a 1.5 m dilution skin (corresponding to an excavator bucket width) around the perimeter of mining blocks on each bench, taking account of the smallest mining unit (SMU) dimensions. The average grade of this in-pit dilution skin was assumed to represent the mining dilution grade. The calculated average grade of the dilution skin was 0.16% CuEq (0.15% Cu and 0.02 g/t Au).

The following assumptions were made regarding production scheduling:

- The Mineral Resources classified as Indicated and Inferred were scheduled.
- Dilution: 7% at 0.16% CuEq.
- Mining losses: 2%.
- SMU: 10 x 10 x 5 m.

- Stockpile grade criteria reflecting different copper recoveries:
 - o Cupuzeiro : 0.19% to 0.21% CuEq;
 - o Homestead 0.18% to 0.20% CuEq.
- Low-grade material will be stockpiled throughout the LoM and rehandled at the end, following the completion of mining activities.

SRK Consulting (UK) Limited Planalto NI 43-101 – Main Report

Table 16-3: Mine Schedule (Lara, 2025)

	Cupuzeiro RoM			Homestead RoM			Total RoM				Stockpile		Waste	Total		
	Mt	Cu (%)	Au (g/t)	CuEq (%)	Mt	Cu (%)	Au (g/t)	CuEq (%)	Mt	Cu (%)	Au (g/t)	CuEq (%)	Mt	CuEq (%)	Mt	Mt
Pre strip	0.0	0.22	0.04	0.24	0.6	0.58	0.08	0.62	0.6	0.57	0.08	0.62	0.1	0.18	16.2	17.0
1	1.9	0.58	0.07	0.62	5.0	0.45	0.05	0.48	6.9	0.49	0.05	0.52	1.0	0.18	14.1	22.0
2	2.4	0.63	0.08	0.68	5.6	0.43	0.04	0.46	8.0	0.49	0.05	0.52	0.9	0.19	13.1	22.0
3	2.6	0.58	0.07	0.62	5.4	0.44	0.05	0.47	8.0	0.49	0.06	0.52	0.8	0.19	6.2	15.0
4	3.0	0.63	0.07	0.67	5.0	0.45	0.05	0.48	8.0	0.52	0.05	0.55	0.7	0.19	6.3	15.0
5	3.1	0.66	0.07	0.71	4.9	0.44	0.05	0.47	8.0	0.53	0.06	0.56	8.0	0.19	13.2	22.0
6	3.8	0.53	0.06	0.56	4.2	0.44	0.05	0.47	8.0	0.48	0.05	0.51	0.7	0.19	13.3	22.0
7	3.5	0.43	0.05	0.45	4.5	0.37	0.04	0.39	8.0	0.40	0.04	0.42	0.9	0.19	12.1	21.0
8	2.6	0.40	0.04	0.43	5.4	0.38	0.03	0.40	8.0	0.39	0.03	0.41	1.4	0.19	11.6	21.0
9	3.1	0.41	0.05	0.43	4.9	0.40	0.03	0.41	8.0	0.40	0.04	0.42	1.7	0.19	16.8	26.5
10	5.7	0.44	0.05	0.47	2.3	0.41	0.04	0.43	8.0	0.43	0.05	0.46	1.0	0.19	26.0	35.0
11	5.4	0.43	0.05	0.46	2.6	0.45	0.03	0.47	8.0	0.44	0.05	0.46	0.3	0.19	26.7	35.0
12	3.9	0.47	0.06	0.51	4.1	0.43	0.03	0.44	8.0	0.45	0.05	0.48	0.9	0.19	26.1	35.0
13	4.6	0.47	0.06	0.51	3.4	0.41	0.03	0.43	8.0	0.45	0.05	0.47	0.5	0.19	23.5	32.0
14	5.9	0.44	0.05	0.47	2.1	0.44	0.04	0.46	8.0	0.44	0.05	0.47	8.0	0.19	13.2	22.0
15	6.8	0.43	0.06	0.46	1.2	0.42	0.04	0.44	8.0	0.43	0.06	0.46	0.5	0.19	12.5	21.0
16	7.3	0.47	0.06	0.50	0.0	0.41	0.04	0.43	7.4	0.47	0.06	0.50	0.3	0.20	12.9	20.5
17	3.4	0.43	0.05	0.45	0.1	0.43	0.04	0.45	3.4	0.43	0.05	0.45	0.1	0.20	2.5	6.0
Total	69.0	0.48	0.06	0.51	61.3	0.43	0.04	0.45	130.3	0.45	0.05	0.48	13.4	0.19	266.3	410.0

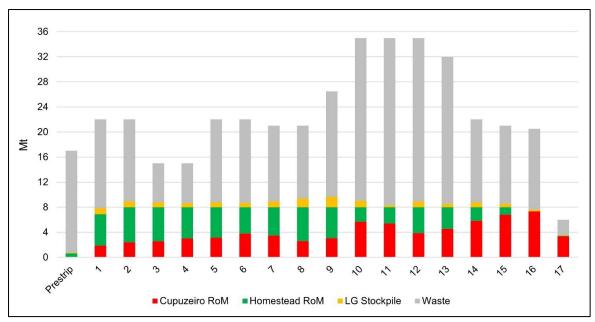


Figure 16-6: Annual Pit Rock Movement (Lara, 2025)

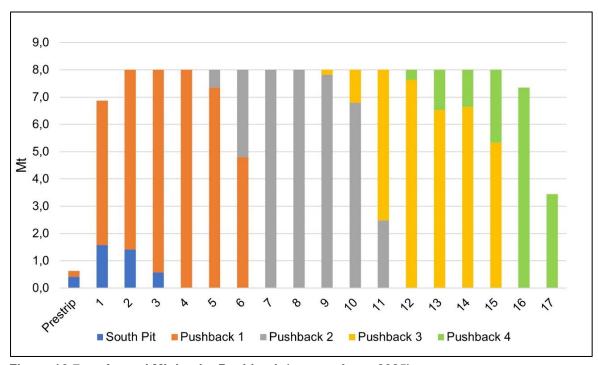


Figure 16-7: Annual Mining by Pushback (source: Lara, 2025)

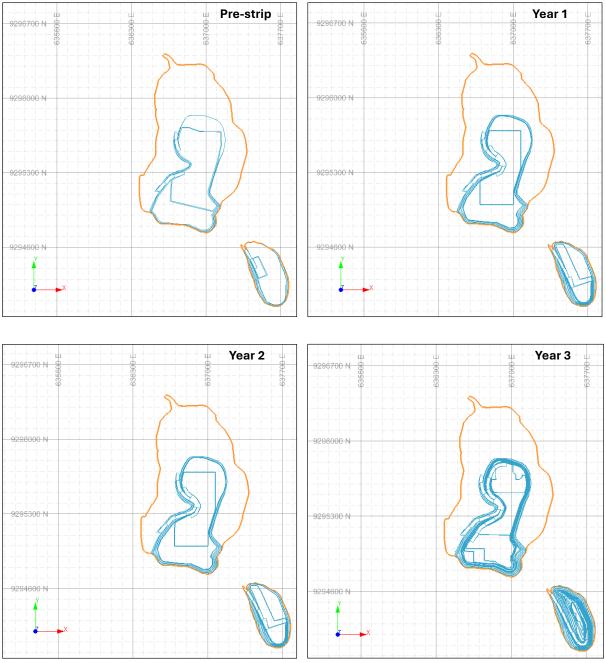


Figure 16-8: Mining Sequence Pre-Strip to Year 3 (Lara, 2025)

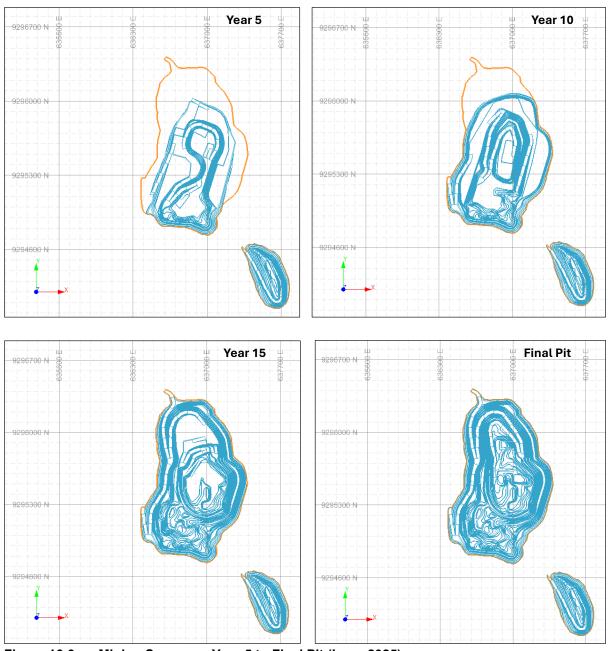


Figure 16-9: Mining Sequence Year 5 to Final Pit (Lara, 2025)

16.1.4 Mine Equipment

The project's mining operation is open pit mining with conventional techniques for surface rock mass excavation, using a maximum level of mechanization. The waste rock comprises soil, saprolite, weathered rock, and fresh rock. The mining faces will be accessed by 26 m (main pit) and 17 m (south pit) wide double-lane roads with a 10% maximum gradient. The main characteristics of the operations are presented below:

- Blastholes: holes will be drilled using a hydraulic top hammer drilling rig.
 - Mineralized material: 3.0-5.0 inch hole diameter, 21-23 kW rock drill (e.g. Sandvik Ranger DX800).
 - Waste rock: 3.5-6.0 inch hole diameter, 35-40 kW rock drill (e.g. Sandvik Pantera DP1500).
- Primary rock blasting: explosives fragment most of the rock, mineralized material, and waste rock. Contractors will run drill and blast operations at the project. Lara will be responsible for managing the contractors to achieve the necessary production.
- Loading and haulage operations at the project will be carried out by contractors. Lara will be responsible for the contractor's management in achieving the necessary production.
 - Mineralized material: 94 t (CAT 395, etc) operating-weight hydraulic excavators, loading road trucks (FMX 500 Volvo, etc) with 40 t capacity.
 - Waste rock: 250 t (Liebherr R 9250, etc) operating-weight hydraulic shovel, loading off-road trucks with 100 t (CAT 777, etc) capacity.
- Ancillary equipment used for the preparation and development of the mine includes dozers, front end loaders (FEL), motor graders, water tanker and fuel/lube trucks.
- The low-grade material stockpiled will be rehandled using a FEL and road trucks to feed the primary crusher.
- The mining operation will primarily use 10 m high benches for waste rock; however, in areas requiring greater selectivity near ore/waste boundaries, 5 m benches may be employed.

Table 16-4 and Table 16-5 present the estimated number of main and ancillary equipment required to meet the production schedule, based on standard parameters and the average haulage distance. The estimated equipment fleet is for reference purposes only, since mining operations will be executed by third-party contractors.

Table 16-4: Main equipment (source: Lara)

Equipment	Reference	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Drill rigs	DX 800	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Drill rigs	DP 1500	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Hydraulic shovel	Liebher R 9150	2	2	1	1	2	2	2	2	2	4	4	4	4	3	2	2	1
Off- highway trucks	CAT 777	6	5	3	4	7	7	8	8	10	17	19	18	20	14	10	10	6
Excavators	CAT 395	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Road trucks	Volvo FMX 500	9	9	9	12	12	12	14	14	14	15	15	15	16	16	16	16	16

Table 16-5: Ancillary equipment (source: Lara)

		,					,											
Equipment	Reference	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Dozers	CAT D10	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Wheel Loader	CAT 950	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Motor Grader	CAT 160	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Truck crane	-	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Fuel/lube truck	-	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Water truck	-	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Air compressor	-	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Illumination tower	-	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Pumps	-	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Power generator	-	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Rock breaker	-	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2

16.1.5 SRK Comments

The pit optimization, mine scheduling, and fleet sizing have been appropriately developed using proven industry-standard and practical mining methods suitable for the deposit type and consistent with the project's conceptual level. Modern mine planning software was utilized in accordance with standard industry practices.

Mining operations will be conducted using different-sized equipment for mineralized and waste material, aiming to control and reduce dilution. The activities will be carried out by contractor companies that provide equipment similar in size to those considered for the Planalto project. The use of contractors for mining execution is a common practice in open-pit operations in Brazil for this scale of production.

Mining of copper-gold mineralized material at the Planalto project will be based on conventional open-pit unit operations, including the removal, transport, and storage of overburden and waste rock, as well as the extraction and hauling of mineralized material to the processing plant.

The LoM plan was developed based on Indicated and Inferred Mineral Resources which is appropriate for a PEA level of study. Of the total mineralized material above the cut-off grade (CoG) of 0.18% Cu at Homestead and 0.19% Cu at Cupuzeiro, approximately 67% is classified as Inferred and 33% as Indicated. There is geological risk associated with Inferred Mineral Resources, shape and continuity of this mineralisation will need to be better defined by extra drilling before the classification can be upgraded to Indicated as required for a prefeasibility study mine plan.

16.1.6 Recommendations

The recommendations listed below are focused on improving the mine plan components:

- Review the selected pit shells used as a reference for the pushback design to evaluate the incorporation of an additional pushback in the early years of operation, aiming to increase copper grades at the processing plant.
- Define whether the operation will be carried out with owner-operated or contractoroperated equipment.

16.2 Geotechnical Considerations

16.2.1 Introduction

In terms of basic open pit geometry, there will be a primary pit Main Pit (Homestead-Cupuzeiro) with a depth of approximately 250 m and to SE, plus a smaller pit at Silica Cap approximately 110 m deep. SRK has undertaken an assessment of the available geotechnical information to inform the basis of the recommended PEA slope design criteria.

16.2.2 Existing Data

The following geotechnical data has been made available and used to support this PEA document:

- Technical Report: Slope Stability Analysis Planalto Copper Project. Canaã dos Carajás,
 Para, Brazil. GE21 Consultoria Mineral. July 2024 (GE21 July 2024).
- Independent Technical Report on the Mineral Resources Estimate for the Planalto Project, Canaã dos Carajás/Pará, Brazil. GE21 Consultoria Mineral, dated 5 September 2024 (Effective 3 July 2024).
- A geotechnical database derived from data collected during resource drilling programmes.
 The following geotechnical parameters were collected:
 - Rock Quality Designation (RQD) %;
 - estimation of intact rock strength;
 - degree of weathering.

GE21 July 2024 includes a review of the existing geotechnical database resulting in the development of two broad geotechnical domains in the form of highly weathered overburden and underlying fresh rock.

In addition, limit equilibrium stability analysis was undertaken to assist in developing initial slope design criteria.

GE21 notes that no structural data was reviewed, although available, and hence none was included in any stability analyses. It should be noted that orientated core data were in fact collected during a number of the resource drilling programmes.

SRK Comment

Based on the geotechnical information available to GE21, SRK considers the slope design criteria proposed in GE21 July 2024 to be reasonable for a scoping level PEA assessment. However, SRK also considers the lack of structural data assessment and kinematic analyses to be a gap within the study. It is likely that the geotechnical design criteria for the fresh rock slopes will primarily be governed by the orientation, spacing and conditions of the structures (primary and secondary structures) within the rock mass, both on a bench scale and more broadly, on an inter-ramp scale and as such, it will be important to collect structural data to feed into the geotechnical design as the study moves to PFS.

16.2.3 Pit Slope Review

SRK undertook a reconciliation between the pit design (NewFin2C) and the geotechnical slope design criteria recommended in GE21 July 2024 (Table 16-6).

	Pit						
Design Element	Fresh Rock		Oxide				
	Value	Unit	Value	Unit			
Bench Face Angle	75	۰	56	٥			
Overall Slope*	52	۰	32	۰			
Bench Height	10	m	10	m			
Berm Width	5	m	5	m			
Ramp Width	20	m	20	m			
Ramp Slope	10	%	10	%			
Minimum Pit Base Width	40	m	-	m			

Table 16-6: PEA slope design criteria (GE21 July 2024)

There are minor differences between the final pit design and design parameters applied. These are considered nonmaterial and can be updated in further studies. Differences include:

- Saprolite berm widths are 4 m and not the proposed 5 m, resulting in a steeper inter-ramp angle (IRA) of 39° compared to a design IRA of 32°. In some areas of the pit, the base of saprolite design does not align with the base of saprolite surface provided to SRK with the fresh rock slope design extending into the overlying saprolite; any future correction is expected to have negligible impact on pit optimisation and overall mining costs.
- Within the fresh rock unit, bench height conforms to the recommended design but bench face angles are 70° instead of 75° and berm widths are 4 m instead of the proposed 5 m.
 Nevertheless, IRA generally conform to the proposed design as these two factors essentially cancel each other out.

The geotechnical design criteria have also been applied to the southeastern Silica Cap pit which SRK considers generally appropriate; however, geotechnical logging of core from boreholes located in the NE wall and southern central area of this pit has identified low RQD values, low intact rock strength (R2), and a higher degree of weathering, indicating a significantly poorer rock mass in Silica Cap than the main pit area. This zone of weaker material is interpreted by Lara as a late extensional fault zone developed at, or across the contact between granite and volcanic rocks, and will be investigated as the study moves forward. Boreholes 19-022 and 19-025, which encountered the weaker rock in Silica Cap are displayed in Figure 16-10 showing A) RQD values; <20%, B) intact rock strength with R0 to R2 material presented; and C) weathering with W1 to W4 material presented.

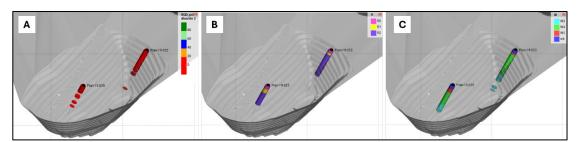


Figure 16-10: RQD, intact rock strength and weathering

^{*}Note that it is not clear if the 'Overall Slope' represents an inter-ramp angle.

16.2.4 Project Scale Geological Setting

The Planalto project is located in a complex thrust fault zone at the southern edge of the Carajás Basin where older rocks of the Transition subdomain are partially thrust onto the Carajás basin volcanics. Fault slices of felsic and mafic metavolcanics of the Parauapebas Formation occur in the eastern part of the project. Tonalites and granodiorites of the Campina Verde Tonalite occur in the central and western parts. The Bom Jesus foliated migmatitic orthogneiss, with lenses of amphibolite, occur in the extreme south and some minor supracrustal rocks of the Siqueirinho Group occur in the far NW of the Planalto project (GE21 dated 5 September, 2024 (Effective 3 July 2024)).

16.2.5 Geotechnical Conditions

Overburden/Saprolite

Assessment of geological logging data and core photographs indicate a consistent zone of saprolite across the project area which is overlain by a thin lateritic cap. A 'base of oxide' surface has been provided in Datamine software which indicates maximum thickness of approximately 30 m (minimum thickness approximately 10 m and average thickness approximately 25 m) in the location of the final pit slopes. Figure 16-11 shows a typical example of saprolite recovered during the 2023 core drilling programme. Core photographs indicate a typical saprolitic material. No evidence of remnant structure can be observed within the core photographs. Whilst no laboratory testing has been undertaken, the saprolite will present soil strength material with existing geotechnical logging assigning a rock strength of R0, indicating extremely weak rock.

Figure 16-12 shows the intersections of material assigned a rock strength of R0 (purple colour), representing zones of saprolite within the NewFin2C pit.

Figure 16-11: Representative example of overburden/saprolite (Borehole 23-016: 6.49 m to 13.01 m)

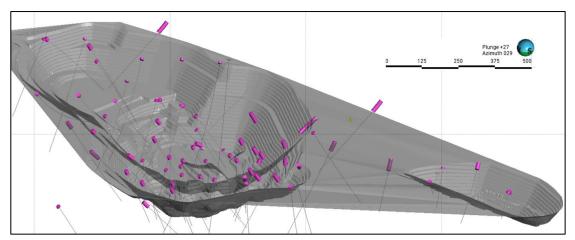


Figure 16-12: Downhole intersections of R0 strength material representing saprolite unit

Transition Zone

A review of selected core photographs indicates an occasional narrow zone of transition material between the saprolite and fresh rock, where noted, it is approximately 10 m thick on average. The spatial distribution of this zone has not been investigated in detail by Lara, but is thought to relate to differing volcanic rock lithologies more susceptible to fracturing. It is represented by heavily fractured rock (low RQD), with clay infill on observable joint surfaces (Figure 16-13). The transition zone grades into the underlying fresh rock. It should be noted that the transition zone is not observed within all boreholes. Figure 16-14 shows an example of a borehole (19-027) that does not contain transition zone; rock type changes sharply from saprolite into fresh rock.

Figure 16-13: Representative section of transition rock (Borehole 23-005: 39.90 m to 52.76 m)

Figure 16-14: Sharp contact between saprolite and fresh rock (Borehole 19-027: 17.90 m to 23.75 m)

Fresh Rock

The fresh rock is formed from three primary suites of lithology; hydrothermal, granitic and metavolcanic. Observations from core photographs and the rudimentary geotechnical data collected during core logging indicate a very competent fresh rock mass with moderate to widely spaced discontinuities. Whilst no laboratory data are available, it is likely that the rock can be considered likely to have high intact rock strength. Rock Mass Ratings (RMR) for the fresh rock would in general be in excess of 70, indicating a Good rock mass.

Figure 16-15 shows a representative example of fresh rock.

Figure 16-15: Representative section of fresh rock (Borehole 19-027: 136.54 m to 143.94 m)

Fracture Zones

Within the fresh rock unit, a number of fractured lengths of core were noted with low RQD values. It is not clear if these zones represent defined fault structures or manifest themselves as a result of zones of more intense fracturing/structures that are recovered as 'shattered' zones within the drill core. Assessment of downhole RQD data indicates that narrow (generally less than 1 m length) zones of RQD <20% are distributed throughout the proposed pit, these are shown in red in Figure 16-16.

Some of the thicker areas of low RQD at the top of the boreholes are within saprolite where low RQD is normal; however, there are also low RQD fresh rock intersections noted, particularly in the Silica Cap pit where an interval of approximately 73 m of <20% RQD has been recorded. The reason for the greater thickness of <20% RQD values in borehole Plan-19-022 is interpretated by Lara as a brittle fault zone close to the granite volcanic contact, developed during granite emplacement. There is a possibility that the borehole drilled down the dip plane of a fault, resulting in low RQD values.

Figure 16-17 shows an example of a typical fracture zone.

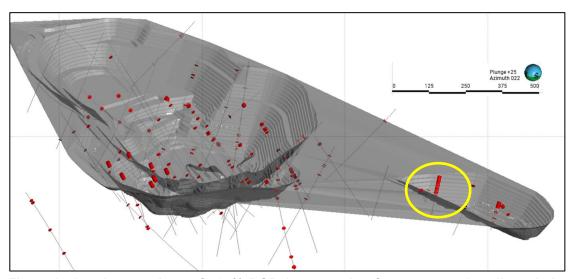


Figure 16-16: Intersections of <20% RQD (representing fracture zones); yellow circle shows deeper <20% RQD in Silica Cap pit

Figure 16-17: Typical example of fracture zone (Borehole 22-016: 280.40 m to 282.48 m)

16.2.6 Geotechnical Considerations

SRK considers that the two defined geotechnical domains (on the basis of rock mass strength) are the saprolite and fresh rock, with each having distinctly differing engineering characteristics.

Saprolite

Given the weak nature of the saprolite, shallow slope angles will be required within this material to ensure stable conditions. The saprolite will likely be sensitive to changes in pore pressure, with elevated pressures potentially leading to less stable conditions. In addition, during periods of wet weather, trafficability on the saprolite surface may be challenging. While it is not clear if there are any remnant structures within the saprolite, if present, such features can often give rise to bench scale and on occasion, multi-bench scale instability. Given the low intact and mass strength, it is likely that the saprolite can be mechanically excavated.

Fresh Rock

The high intact rock strength and moderate to widely spaced fractures result in what can be considered to be a competent rock mass with high RMR values. It is likely that the geotechnical design criteria for the fresh rock slopes will primarily be governed by the orientation, spacing and conditions of the structures (primary and secondary structures) within the rock mass, both on a bench scale and more broadly, on an inter-ramp scale.

Fracture Zones

Specific geotechnical consideration for the fracture zones is not required at this stage of the project; however, as the project develops, an understanding of the spatial distribution of the fracture zones will be required, as such zones may 'link' up to form fault surfaces which will need to be considered in future studies.

16.2.7 Recommendations

SRK considers that the following is required to develop prefeasibility geotechnical design criteria:

- Development of a specific geotechnical drilling programme defined to collect rock mass and structural information. The drill programme should be planned to ensure an appropriate level of geotechnical data is collected and that potential structural bias due to drilling orientation is mitigated.
- Boreholes within the PFS drill programme should all be subject to downhole televiewer surveys to collect structural information. SRK considers that this is the most suitable method (as an alternative to manual core orientation) to obtain high quality structural information.
- Boreholes should be subject to rock mass and structural logging.
- A laboratory testing programme will be required to define material characteristics such as intact rock strength and discontinuity shear strength.
- Development of rock mass and structural models that will feed into the development of a geotechnical model.
 - The structural models will include a three-dimensional fault model and discontinuity/fabric structural model.
- Utilising the updated geotechnical model, undertake appropriate analytical studies to develop geotechnical design criteria for each geotechnical design domain.

ITEM 17. RECOVERY METHODS

The basis of design for this study is a conventional concentrator with crushing, grinding and flotation being fed at a rate of 8 Mtpa, of which 70% will be from Homestead and the majority of the remainder will be from Cupuzeiro with relatively small input sourced from Silica Cap producing a copper concentrate with 28% Cu with a copper recovery of 90.8% and a gold recovery of 51% for the first six years of operation. The metallurgical performance has been provided by the USIM PAC process modelling carried out by Consensum Engenharia (Consensum).

17.1 Introduction

Consensum used the results of the Blue Coast metallurgical testwork reviewed in Section 13 to develop a plant flowsheet and mass balance, with forecast concentrate quantity and quality based on treating 8 Mtpa of ore; their findings were presented in their final report, PLA-PRO-REL-0001_CONSEMSUM_Final Report_en.pdf dated 9 April 2025.

A 70:30 blend of Homestead to Cupuzeiro ores has been assumed for the first six years production at a rate of 8 Mtpa and an average head grade of 0.5% Cu.

Consensum noted in the report that the Cupuzeiro Metallurgical Testwork was carried out at a coarser grind than the Homestead testwork and that the Cupuzeiro copper recoveries were lower than those achieved with the Homestead samples.

Assuming that the finer grind would be selected for the plant design, the results from the Homestead testwork were used to as inputs to a steady-state process simulation software (USIM PAC), designed specifically for modelling and optimising complex mineral processing flowsheets. The USIM PAC software helped develop the flowsheet and generate the mass balance from which the mineral processing equipment has been selected.

Preliminary equipment sizing was carried out using the results of the USIM PAC simulation and the experience of the engineering company on other projects, especially in areas of the flowsheet where no specific testwork results were available.

ONIX Engenharia e Consultoria Ltda. (ONIX), used the resulting mass balance and equipment sizing to develop a preliminary plant engineering and an equipment list for the Planalto Concentrator. The plant equipment list has then been used to develop the capital expenditure estimate based on supplier quotations for the major equipment. A plant operating cost estimate has been developed from ONIX's data base and major utility quotes and was included in their report PLA-RL-1000-OX-000-001-R4_en.doc.

The testwork undertaken to date does not cover all aspects of the flowsheet and some assumptions have been made in the sizing of the equipment, reducing the accuracy of the capital expenditure and operating costs estimates, but the accuracy remains within the normal boundaries for this level of study.

17.2 Process Description

The preliminary flowsheet for the 8 Mtpa Planalto concentrator is a standard approach for the processing of copper sulphide. The only copper bearing mineral in the Planalto deposit is chalcopyrite; the gold is associated with the chalcopyrite and is also concentrated with the chalcopyrite during flotation, which makes for a simple floatation approach.

The process flowsheet proposed in this PEA is industry standard and well understood. The equipment required to process at a rate of 8 Mtpa would be considered medium sized and low risk. Similar flowsheets are in use at the nearby Carajás Complex (Vale's Sossego Project) and OZ Minerals Brazil's (now BHP) Pedra Branca Project, plus Ero Copper's Tucuma project commissioned in 2025.

The process of concentrating the copper minerals to a saleable concentrate uses froth flotation to separate the copper bearing chalcopyrite from the gangue (waste) minerals. Chalcopyrite can be chemically conditioned to float into the froth in a flotation cell, allowing concentration of the mineral.

In order for the flotation to be effective, the chalcopyrite has to first be liberated from the gangue material which takes place at very fine sizes. The process plant feed must first be dry crushed below 250 mm and then milled where it is ground as a slurry in water to less than 0.1 mm.

After grinding, flotation separates the chalcopyrite from the waste. The process can include finer re-grinding of the froth stream to further liberate the value minerals (chalcopyrite). Flotation of an initial concentrate at a coarse size and then regrinding of the froth stream to the finer size required for final product quality saves having to grind the whole plant feed very finely.

Finally the concentrate is thickened and filtered to a suitable semi-dry state as the final saleable copper- gold concentrate for transport by truck or rail.

17.3 Flowsheet

An original flowsheet from the Consensum report PLA-PRO-REL-0001_CONSEMSUM_Final Report_en.pdf was amended in the Onix Report 201-1000-000-EL-001 Rev 4 is included in Figure 17-1.

After drilling and blasting in the pit, RoM material will be delivered to a primary crusher at the concentrator by large mine trucks where it can be dumped directly into the crusher hopper or stockpiled on the RoM pad and later fed to the crusher by FEL. The primary crusher will crush the rock to a size less than 250 mm and is selected to operate 70% of the time to allow for maintenance. This is good plant design practice.

Crushed material from the primary crusher is conveyed to a stockpile which forms a buffer between the primary crusher and the concentrator. The stockpile enables the plant to operate continuously while the primary crusher operates 16-18 hours per day. At 11 hours capacity, the current design of stockpile is undersized. A typical crushed ore stockpile would have 48-72 hours live capacity. As there is minimal cost in the size of the stockpile, this modification will have minimal impact on the plant capital expenditure and operating costs and should be updated in future engineering exercises.

Crushed ore is withdrawn from the stockpile by apron feeders under the stockpile onto the plant feed conveyor belt and fed to the grinding circuit which consists of a SAG mill followed by two parallel ball mills in a standard configuration. The SAG mill is in closed circuit with a pebble crusher which crushes oversize rocks in the mill discharge and returns them to the SAG mill feed. The fine material from the SAG mill with a P_{80} of 1.7 mm feeds both ball mills each of which is in closed circuit with a bank of hydrocyclones. The hydrocyclones classify the ball mill product to control the feed to the flotation circuit at the target grind size of 75 μ m. Oversize coarse material from the hydrocyclones returns to the ball mill feed.

The overflow from the hydrocyclones associated with each ball mill feeds into a dedicated line of rougher flotation cells. The two banks of rougher cells, one associated with each ball mill, produce initial concentrates equal to approximately 10% of the mass feed to the roughers which are reground to a P_{80} of 15-20 μm in concentrate regrind mills dedicated to each rougher line. The re-grind size was determined in the metallurgical testwork. The finely ground concentrate from each regrind mill is then combined and then fed to the common cleaner circuit where it is upgraded in two stages of flotation to make a saleable concentrate. The first stage of cleaner cells are followed by a bank of cleaner-scavengers which recover any partially liberated chalcopyrite and return it to the concentrate re-grind mill for additional grinding.

When processing the low pyrite ores, rougher flotation tailings and cleaner-scavenger flotation tailings are combined in the tailings thickener where they are thickened before being pumped to the tailings dam. Tailings thickener overflow is returned to the concentrator as process water.

When processing the higher pyrite ores, the cleaner-scavenger tailings, which will be high in pyrite, are thickened separately and pumped to the pyrite TSF where they are stored separately. A separate cleaner-scavenger tailings thickener has been included in the capital expenditure for this purpose.

Final copper-gold concentrate from the last cleaner stage is thickened before final dewatering in a pressure filter to a filter cake with a moisture content of 8% which will be shipped off site as final product.

SRK Consulting (UK) Limited Planalto NI 43-101 – Main Report

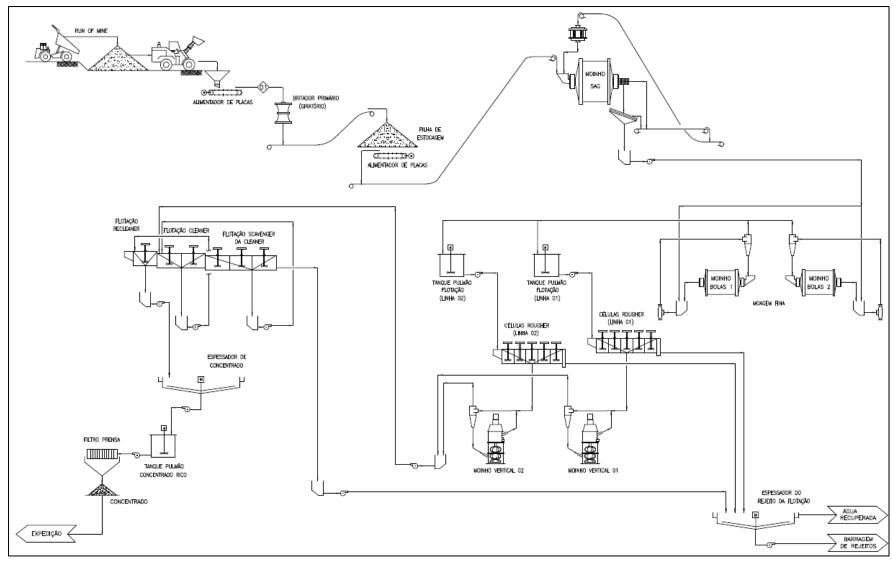


Figure 17-1: Preliminary Flowsheet (source: ONIX)

17.4 Equipment Selection

Preliminary testwork carried out at Blue Coast Metallurgy & Research has been used by Consensum to design the flowsheet, specify process requirements and size the equipment.

ONIX developed short specifications for the process technology equipment which were sent to reputable Original Equipment Manufacturers (OEMs) to provide budgetary quotations for specific equipment either manufactured or assembled in Brazil on a delivered and tax inclusive basis, or sourced from international supplier paid for at local port of manufacturer excluding costs associated with shipping to Brazil and importation taxes.

Equipment selection was made in conjunction with the following suppliers:

- Metso Corporation (Metso): Milling and crushing;
- FLSmidth & Co. A/S. (FLS): Flotation and thickening;
- Andritz AG (Andritz): concentrate filter presses;
- Weir Pumps Ltd (Weir): pumps;
- Brazilian suppliers known to ONIX; or
- from ONIX's internal database of equipment.

Where testwork is yet to be carried out, reasonable assumptions have been made on the equipment sizes using nearby operations, other Brazilian projects or industry standards for equipment capacity.

17.4.1 Crushing and Grinding

The ONIX Conceptual Engineering Report (ONIX-201-1000-000-RL-001 Rev 4) reflects the flowsheet in Figure 17-1 and specifies a conventional Gyratory and SABC grinding circuit.

Ore characterisation testwork carried out by Blue Coast did not include uniaxial compressive strength (UCS), Drop Weight Testing (JKDw) or Crushability Index (CWi). This is not unusual at this early stage of project development; however, without specific breakage energy results, assumptions for these characteristics have been made for sizing the crusher and SAG mill and there is therefore reduced confidence in the estimates as a result of this.

In the absence of testwork on Planalto samples, the specific breakage energy used in the design of a nearby large copper mining operation has been assumed for the Planalto PEA and provided to the OEM to size the comminution equipment for the Planalto process plant throughput. This approach is reasonable at this stage of the Project. The values assumed for the Planalto project were:

- specific crushing energy (1.4 kWh/t); and
- rated specific power at pinion (8.1 kWh/t).

Based on these assumptions, the equipment supplier's recommendations were:

- 42 x 65 primary gyratory crusher;
- dual pinion SAG mill, 38' diameter x 22' long with 2 x 9 MW motors; and
- MP800 cone crushers for the pebble crushing duty.

The average value of the five BWi test results from the Blue Coast metallurgical testwork was provided to the OEMs to size the ball mills; the recommended equipment was:

• two 24' diameter x 37' long Ball Mills, each with two (2) 6 MW motors providing 12 MW of installed power per mill.

The grinding circuit configuration is normal for the processing of copper ores. The crushers and mills have been sized based on the results of the laboratory testwork where available and using comparable local projects where data is not yet available. Equipment vendors used to provide budgetary quotations are recognised suppliers familiar with processing copper ore and established suppliers to the Brazilian market.

17.4.2 Flotation

From the grinding circuit, the overflow from each cluster of hydrocyclones feeds into a dedicated bank of rougher flotation cells. Each bank of cells includes a concentrate regrind mill with its own bank of hydrocyclones to control the re-grind product size.

Reground rougher concentrate feeds into the cleaner circuit where the rougher concentrate is upgraded to the final copper concentrate in two stages of cleaning. Tailings from the final cleaner are recirculated to the head of the first cleaner. Tailings from the first cleaner feed the cleaner scavenger. Cleaner scavenger concentrate passes back to the regrind mill.

The Blue Coast testwork reports include laboratory locked cycle testwork which determine the circuit performance as well as kinetic testwork. Standard industry practice is to use these to scale up to full plant residence time.

Rougher Flotation & Rougher Concentrate regrind:

Two parallel rows of six 160 m³ cells each row with a dedicated concentrate regrind vertical mill and hydrocyclone cluster. Rougher tailings pass to the tailings thickener. Rougher concentrate is reground before passing to the cleaner circuit. Rougher banks are configured so that froth from the cells at the head of the bank can be diverted directly to the final cleaner without regrinding when high grade is achieved.

Cleaner Flotation / Cleaner Scavenger Flotation:

A common bank of three 30 m³ cells as cleaner followed by 30 m³ cleaner-scavenger cells. Froth from the cleaner cells passes to the re-cleaner stage. Froth from the cleaner scavenger cells returns to the re-grind circuit. Cleaner-scavenger tailings pass to the tailings thickener, or, when processing high pyrite tailings, to a dedicated pyrite tailings thickener.

Re-Cleaner Flotation:

A common bank of two 30 m³ cells as re-cleaner cells to produce final copper concentrate. Tailings from the re-cleaner cells are re-circulated to the first cleaner cells.

The flotation circuit configuration is normal for copper sulphide flotation. Cells have been sized based on the results of the laboratory testwork and appropriately scaled up. Equipment vendors used to provide budgetary quotations are recognised suppliers familiar with processing copper ore and established suppliers to the Brazilian market.

17.4.3 Dewatering

No dewatering testwork has been carried out. This is not unusual at this stage of a project.

Concentrate

The concentrate thickener design is generous at a 15 m diameter. SRK propose that a 10 m diameter concentrate thickener is probably sufficient; however at this stage, the 15 m unit is included in the PEA; this can be optimised later.

A single 1,500mm x 1,500mm filter press will dewater the final copper concentrate. The filter proposed is fully automated membrane type filter press with 40 chambers. The filter sizing allows for two hours of downtime per day for maintenance including cloth changes.

Rougher Tailings - Conventional Disposal

A 50 m tailings thickener has been included in the plant design for the dewatering of 8 Mtpa of copper flotation tailings. This equates to a thickener unit area of 0.08 m²/mtpd which is well within the range that would be expected for a slurry type of tailings material.

Rougher Tailings - Central Thickened Discharge Option

A different methodology is proposed for later years, where tailings slurry is thickened to a homogeneous state using a deep cone type thickener. The underflow from such a thickener can be used for a central thickened discharge system. Equipment purchase costs have been sought from an OEM and included in the capital expenditure estimate.

Cleaner-Scavenger (Pyrite) Tailings

A preliminary sizing estimate for the pyrite tailings thickener to treat 70 tph of cleaner scavenger flotation tailings is a 15 m diameter high rate thickener. This cost has been added by SRK to the capital expenditure for the plant based on the cost used by ONIX for the concentrate thickener. No additional operating cost has been allowed for as the reagents and pumping costs will be the same in either scenario (pyrite or no pyrite).

17.4.4 Water Treatment

A water treatment plant has been included in the revised flowsheet to take into account processing of the potentially acidic return water from the pyrite tailings dam and any run-off from the RoM and low grade stockpiles.

Flowrate

A peak wet season flowrate from the pyrite tailings dam and the RoM and coarse ore stockpiles has been calculated by SRK at 200 m³/h.

Plant Size

Based on similar applications of lime conditioned water treatment to elevate water pH to precipitate any dissolved metals, followed by flocculation and settling of the solids, a cascade of four conditioning tanks, providing a total residence time of 24 hours has been included along with a 15 m diameter clarifier to separate treated water for release to the natural environment. Underflow from the clarifier will be pumped to the tailings thickener for disposal in the main tailings dam.

17.5 Equipment Selection

Equipment pricing has been sought from a number of established OEMs who have provided budget quotations that are incorporated into the Project capital expenditure. The suppliers quotes which have been incorporated in the capital expenditure at this stage are shown in Table 17-1.

Table 17-1: Major Process Equipment Suppliers

Item	Vendor	Value	Basis	Location
Crushing				
Primary Gyratory Crusher	Metso	D 2.60 million	FCA EXW	International
Pebble Crushers	Metso	D 2.80 million	FCA EXW	International
Conveyors	Simplex	D 3.76 million	FCA EXW	Domestic
Feeders	Metso	D 1.29 million	FCA EXW	Domestic
Comminution				
SAG Mill	Metso	D 28.0 million	FCA EXW	International
SAG Discharge Screens	Simplex	D 1.26 million	FCA EXW	Domestic
Ball Mills	Metso	D 34.0 million	FCA EXW	International
Mill pumps	Weir	D 2.62 million	EXW	Domestic
Flotation				
Flotation Cells	FLSmidth	D 9.63 million	FCA EXW	Domestic
Regrind Mills	Metso	D 5.80 million	FCA EXW	International
Process pumps	Weir	D1.30 million	FCA EXW	Domestic
Dewatering				
Concentrate dewatering	FLSmidth	D 0.39 million	FCA EXW	Domestic
Concentrate filter	Andritz	D 0.83 million	FCA EXW	Domestic
Tailings dewatering	FLSmidth	D 2.50 million	FCA EXW	Domestic

17.6 Risks Associated with Recovery Methods

The flowsheet is reasonably standard for the processing of copper ores and accounts for the hard nature of the mineralisation at Planalto. Where no metallurgical testwork data is available to size significant equipment in the flowsheet such as the SAG mill, information from nearby operations has been used and appropriately scaled for the project; SRK considers this approach to be reasonable.

In some minor areas of the plant equipment sizes have been selected based on experience and previous projects which is considered to be a low risk approach.

17.7 Comments to the Mass Balance and Predicted Performance

The Consensum mass balance assumes that the plant feed will reflect simultaneous mining of Homestead (70%) and Cupuzeiro (30%) over the first six years of production. These ratios have then been applied to the plant head grade as shown in Table 17-2.

Table 17-2: Consensum Production Plan

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Average
Mtpa	6.685	8.0	8.0	8.0	8.0	8.0	8.0
Cu (%)	0.48	0.49	0.51	0.52	0.53	0.48	0.50

As the Locked Cycle tests for the two main mining areas were carried out at different grind sizes, the Consensum Final Report (Rev 4) highlights that making an average of the concentrate grade and recovery numbers may not reflect the performance of the plant which will be achieving the finer grind size; therefore an elevated recovery for Cupuzeiro at the finer grind could be considered.

Consensum has used the USIM PAC simulation software to forecast the plant performance. The results do not perfectly match the results of the Blue Coast metallurgical testwork. The plant simulation copper recovery is 90.88%, which is slightly higher than achieved in the Locked Cycle testing at a concentrate grade of 28.02% Cu which is slightly lower grade than achieved in the Locked Cycle testing. Gold recovery is predicted to be 51%.

SRK considers the predicted values to be reasonable for the first six years as the proportion of Cupuzeiro material is relatively low in the feed mix. The copper recovery from Cupuzeiro at the finer grind size should be confirmed by additional testing in the next phase.

17.8 PEA Base Case Plant Performance

The plant performance parameters used in the PEA are given in Table 17-2 and the General arrangement of the process plant is presented in Figure 17-2.

Table 17-3: Base Case Processing Parameters

Item	
Throughput	8 Mtpa
Head Grade	0.5% Cu
Concentrate Grade	28.0% Cu
Copper Recovery	90.8%
Gold Recovery	51%

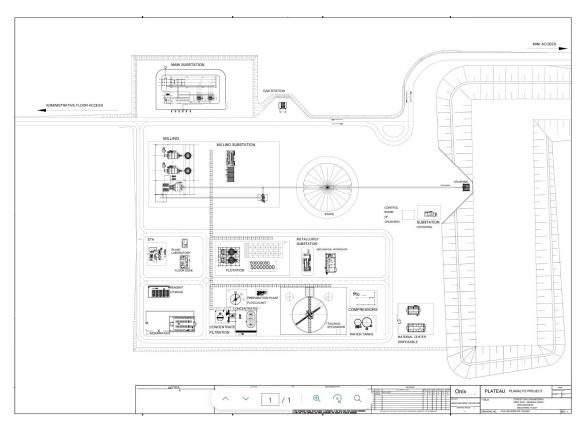


Figure 17-2: General Arrangement. Process Plant (Onix)

ITEM 18. PROJECT INFRASTRUCTURE

18.1 Introduction

The onsite infrastructure required for the Planalto Project will include:

- Access roads and on-site roads.
- RoM pad with stockpiles.
- Process plant.
- Water management infrastructure (diversion channels, storage ponds, water treatment plant).
- Tailings storage facility.
- Site power supply and distribution.
- Site and utilities infrastructure.

Offsite infrastructure includes the transmission line connecting the project main substation to the existing national grid. From the intersection of the access road and the national road 7network, existing infrastructure and third party facilities will be utilised for concentrate transport.

The proposed layout of the Project site is shown in Figure 18-1.

18.2 Project Access Road

For construction and operations, a direct connection to the PA-160 is planned, which avoids routing traffic through the Vila Planalto. The direct connection is much shorter at around 4km to the plant fence line (Figure 18-2).

The site access road will be a two-lane gravel road, expected to be 9 m wide by 4 km long, and follows the alignment of an existing VS41 road and farmland access track. A new concrete bridge crossing a local water course will be required. In addition, a new at-grade junction on the PA-160 will need to be constructed in accordance with local highway design standards to ensure safe access for road users. Other route options exist, but these are longer than the proposed PEA access road (up to 15 km).

Road construction will include clearing, topsoil removal, and excavation followed by incorporation of drains, bulk earthworks, safety bunds or barriers, and backfilling with granular material and aggregates for road surface. The mine gate house will be located on this access road.

SRK Consulting (UK) Limited Planalto NI 43-101 – Main Report

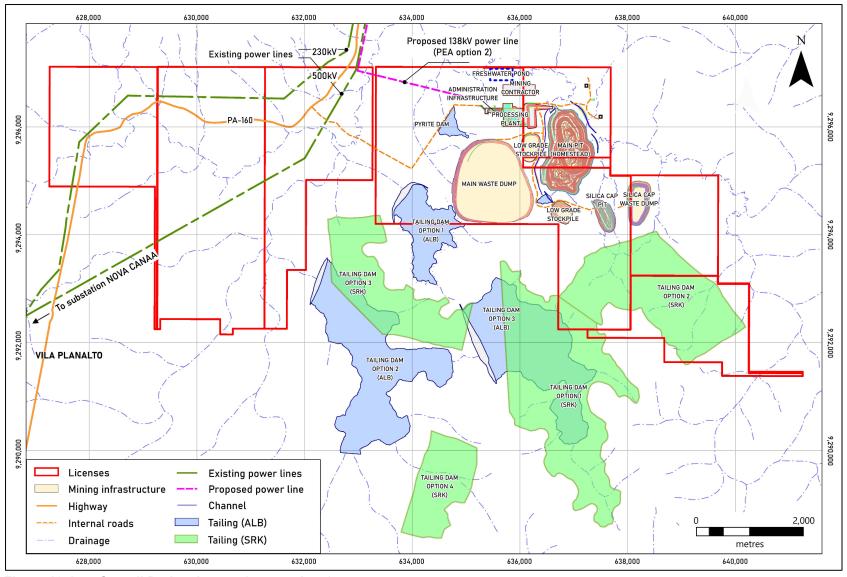


Figure 18-1: Overall Project Layout (source: Lara)

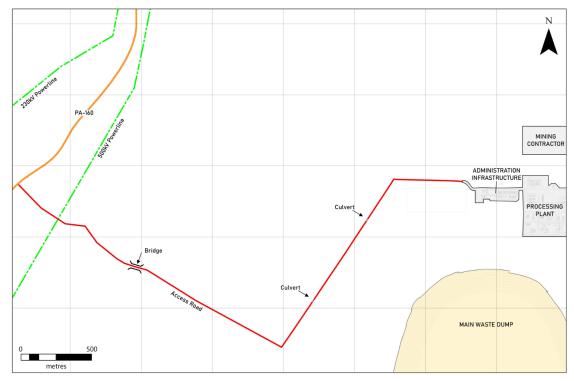


Figure 18-2: Project Access Road

18.3 Tailings Storage Facility

18.3.1 Background

SRK was initially requested by Lara to review historical TSF designs prepared for the Planalto project by ALB Engenharia. This work was originally intended to inform the PEA and associated capital, sustaining capital and operating cost estimates. In July 2025, SRK was instructed to expand the scope of the PEA to include a TSF site selection exercise, which would be used to identify additional potential sites for tailings storage.

The following tasks have been undertaken by SRK as part of this exercise:

- Review of design criteria and tailings mass balance assumptions considered for the latest LoM tailings production schedule.
- PEA level assessment of alternative tailings dewatering, transport and deposition methods.
- Site selection and 3D volumetric modelling of TSF alternatives.
- Preparation of material take offs covering major civils and mechanical equipment items.
- PEA (±50%) accuracy cost estimation and cashflow modelling.

The outcomes of this assessment are summarised in the following report sections.

18.3.2 Work by Previous Authors

A tailings storage facility options assessment was produced in January 2025 by ALB Engenharia (ALB) in support of an Integrated Economic Development Plan (PAE) for the Planalto Project (PML, January 2025). Three potential TSF locations were identified, all located in a large catchment located south and SW of the main deposit (see Figure 18-3 which was generated before the addition of the Atlantica Exploration Licence area). Additionally, a design for a small pyrite dam was conceptualised which would be used to store a potential separate tailings stream generated when processing high pyrite mill feed. The combined dams were designed to give the full LoM storage capacity for the Planalto mine (design capacities are shown in Table 18-1).

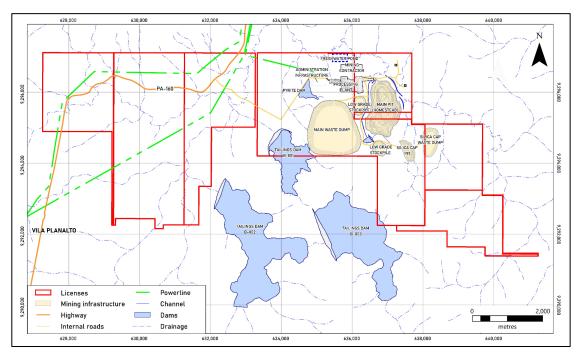


Figure 18-3: Planalto historical TSF Location Plan (ALB Engenharia, 2025)

Table 18-1: Key metrics for the historical tailings dams (ALB Engenharia, 2025)

Structure	Crest Elevation (m)	Maximum Height (m)	Length (m)	Dam Volume (m³)	Foundation Area (m²)	Basin Volume (m³)	Capacity (t)
DAM 001	218	20	1,040	527,408	67,272	11,524,000	18,438,400
DAM 002	200	20	920	515,277	61,852	30,114,487	48,183,179
DAM 003	232	32	1,620	1,825,560	148,597	49,403,515	79,045,624
Pyrite DAM	207	14	680	108,398	22,451	425,000	680,000

The total capital expenditure for the three dams (not including the pyrite dam) was estimated to be USD 48.3M. The operating costs for these dams was estimated at USD 0.11/t of tailings, equating to USD 13.6M. SRK benchmarked these costs to similar projects in the region (2021 to 2024) and generally these appeared to be appropriate.

As indicated in Figure 18-3, all three ALB TSF would lie wholly or partially outside Lara's Exploration Licence areas which are shown as red lines. Therefore, easements or acquisitions would be required for surface and mineral rights to progress these designs to production.

Furthermore, SRK noted that Dam 002, due to store approximately 30% of the total LoM tailings, has a significant upstream catchment area of approximately 100 km² which would require costly water management measures including a 13 km channel to divert estimated annual inflows under both average and storm flow design conditions.

As a result of the above factors, Lara requested SRK to expand coverage of the TSF site selection study to identify options with a lower risk profile at PEA stage. A summary of the additional work completed by SRK is included below.

18.3.3 PEA Design Criteria

A total production of 143 Mt of tailings is estimated over the forecast 18 year processing plan. SRK has assumed an in place settled density of 1.6 t/m³ based on experience with copper tailings in similar project settings. This results in a total TSF storage requirement of some 89 Mm³.

The design criteria and waste balance assumed for the purposes of this assessment are summarised Table 18-2.

Table 18-2: Planalto PEA – Design Criteria

Criteria	Units	Value	Notes
Tailings Physicals			
Life of Mine (LoM)	Years	18	
Processing Rate	Mtpa	8	
Processed Ore	Mt	143	
Assumed Tailings Density (Deposition Density)		1.6	SRK assumption based on averaged drained deposition density
Target Tailings Storage Volume	$\rm Mm^3$	89	
Pyrite Flotation Tailings	Mt	5	
Assumed Tailings Density (Deposition Density)	t/m³	1.6	SRK assumption based on averaged drained deposition density
Pyrite Flotation Storage Volume	Mm³	3.1	
TSF Embankment Geometry			
Crest Width	m	10	SRK Assumption
Upstream Slope Inclination		1V:2H	SRK Assumption
Downstream Slope Inclination		1V:2.5H	SRK Assumption
Freeboard Allowance	m	2	

18.3.4 Key Drivers

Working with Lara, SRK developed a series of dewatering and tailings handling / management options which could be considered for future design studies at Planalto. SRK developed a series of key drivers during its comparison of options (listed below in no particular order):

- Reduce dam catastrophic failure risk, by reducing threats (hazard) and/or consequences.
- Lower the TSF risk profile by reducing the amount of water stored.
- Reduce Population at Risk (PAR) / improve worker health and safety.
- Minimize environment and community impacts (disturbance area / geographic footprint, etc).
- Develop TSF sites within or close to the Planalto Licence Concession Areas.

- Cost (capital and operating) vs. Risk Balance Economic Feasibility / Competitive Option.
- Reduced water consumption/enhanced reclaim/water loss reduction (evaporation and seepage.
- Minimise seepage losses.
- Water quality (effects from saline soils and/or from sulphide minerals in the tailings and waste rock). Potential water treatment costs to address water quality effects.
- Reduced power consumption.
- Reduced dust generation.
- Demonstrated technical feasibility (proven or scalable technologies).
- Permitting (geographic footprint current or new, EIA trigger).
- Geochemistry / acid rock drainage (ARD) mitigation reduction potential.

18.3.5 Tailings Dewatering Options Assessment

Building on the prior alternatives identified and evaluated by others through a series of workshop meetings with Lara, a series of process dewatering and tailings handling / management technology class options were produced. These were ranked to identify a few preferred options that could be considered for future design studies aimed at developing an optimised solution, considering both the key drivers and costs, for the project.

On the basis of the pair-wise comparisons of technology classes the following options were discussed:

High Rate Thickening (HRT) (50% solids w/w) + rockfill impoundments (downstream raised). In terms of precedence in Brazil, there are numerous examples of HRT slurry impoundments, which is a proven technology class. SRK notes that in Brazil, the upstream raise embankment method for new facilities is not favoured due to the enhanced risks associated with slope stability and water management. Downstream raising has been taken forward as the base case for the purposes of PEA cost estimation. SRK has assessed both valley fill type impoundments, which utilise the natural topography in the area for partial containment, plus paddock style hydraulic slurry impoundments, where embankments are fully constructed from mine waste material (plus filter layers and underdrains). This method is considered relatively cost effective and low risk, given the volumes of mine waste available for embankment construction. Surface water management is critical, however, to minimise the volumes of stormwater runoff in proximity to stored tailings material.

- Paste (65-70% solids w/w) + Central Tailings Discharge (CTD). This concept mimics the observed depositional method at Vale's nearby 15 Mtpa Sossego Copper Gold Mine (Figure 18-4). Tailings are thickened to paste consistency and deposited from a number of topographic highs to form a 'deposition cone' above previously deposited material. This method increases storage efficiency (tailings storage to embankment fill ratio), by utilising low perimeter bunds for tailings storage. Dewatering of the tailings minimises volumes of excess water to be stored on the facility during the operational phase. Finally, steeper tailings beach slope angles are achievable (average 2% assumed for the purposes of this study), which enhances storage potential. Stability risks need to be managed by achieving a consistent paste rheology with high enough solids content to form a stable landform above limited perimeter containment. Additional rheology testing would be necessary during subsequent design phases to verify that this method is feasible for the Planalto tailings.
- 100% to pressure filtration for a filtered tailings or dry-stack landform. This option improves global stability, facilitates faster permitting, allows concurrent reclamation / closure and is favourable for other ESG considerations, plus corporate goals/key drivers including seepage mitigation, less water entrained in tailings sent to deposition, capacity, footprint and future expansion potential considerations. This method is considered lowest risk from a geotechnical perspective. Nonetheless, SRK notes that this alternative will incur significantly higher costs than the other alternatives in terms of both capital and operating costs. Finally, SRK notes challenges associated with material handling of dewatered tailings (transport and placement) in the high rainfall tropical climate of Para State. Due to the relatively high annual production rate (8 Mtpa), these components could prove challenging (specifically moisture and compaction control during construction.

Based on the qualitative assessment above, SRK and Lara agreed to take forward hydraulic slurry deposition and paste thickened tailings alternatives for the purposes of the PEA. The Pressure filtration / filtered stack technology class was 'de-selected' at this stage, given the uncertainties associated with successful implementation in this high rainfall setting and relatively high production rate.

Figure 18-4: Sossego TSF General Arrangement (Google Earth, 2024)

18.3.6 Volumetric Modelling and Site Selection

Introduction

SRK has undertaken volumetric modelling to derive a conceptual layout for each TSF scenario, such that earthworks quantities can be estimated for the purposes of cost estimation.

The following data was made available to SRK:

- Lidar Survey Data within the concession boundary (3.0 5.0 m Interval);
- SRTM Topography data retrieved from public domain (30 m interval); and
- Google Earth regional overview and aerial photography.

A Digital Elevation Model (DEM) model was generated using Muk3D software, which was used to select potential TSF configurations in the preferred locations.

TSF Site Selection

The proposed TSF option sites are shown in Figure 18-5, with a summary of design storage capacities included in Table 18-3. The options were selected to be located at the head of catchments where possible, to avoid the requirement for costly surface water diversion structures and spillways. In siting paddock impoundments, SRK identified areas of elevated ground, above potential flood lines. Given the high density of the drainage network in the region (with rivers emanating from high topography in Licence Areas owned by Third Parties, SRK generally favoured elevated hillsides clustered close to the Planalto deposit, in order to simplify surface water management considerations.

SRK subsequently widened the areas under consideration particularly where topography is more conducive to TSF construction. These are described in additional detail in the following report sections.

As indicated in Table 18-3, Options 1 and 2 each have sufficient storage capacity for 100% of tailings produced over the LoM period. Options 3 and 4 have limited potential for expansion and would have to be considered in conjunction with one of the other alternatives.

Option 5 consists of a paddock style facility in the west of the Planalto Licence Area. This is located immediately NW of the village of Vila Planalto. SRK has not conducted volumetric modelling for this area, as the site was ruled out early in the PEA assessment due to proximity to local population centres and major regional roads. Given the distance of the facility from the main deposits (approximately 9.5 km) and potential risks such as dust generation, visual impact and seepage to local populace, this option was discounted from further analyses.

SRK Consulting (UK) Limited Planalto NI 43-101 – Main Report

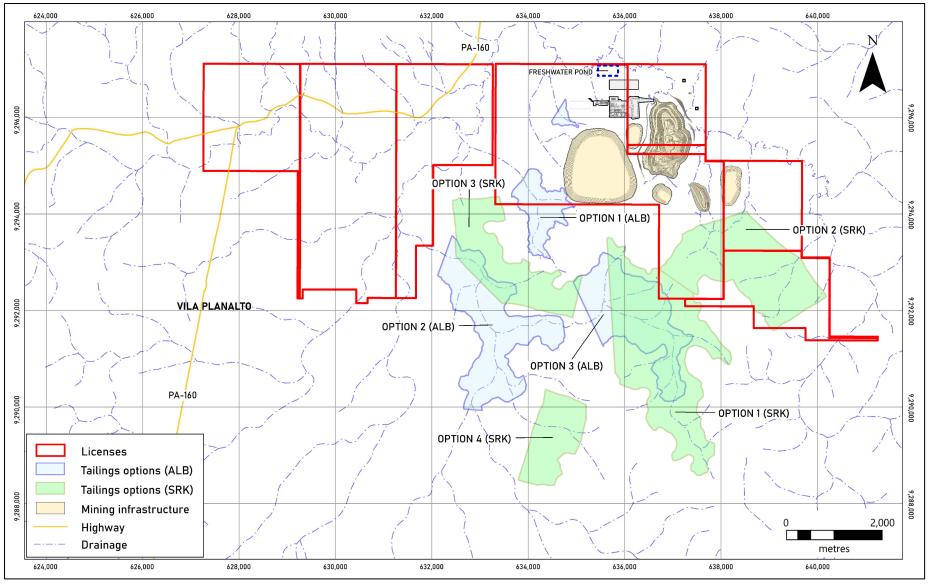


Figure 18-5: Planalto PEA TSF Options (SRK, 2025)

Table 18-3: Tailings Storage Volumetric Comparison

Item	Option 1	Option 2	Option 3	Option 4
Storage Capacity (m³)	101,000,000	91,163,034	32,194,743	24,201,787
Dam Fill Volume (m³)	7,300,000	13,500,000	11,100,000	8,300,000
Storage to Fill Ratio	13.8	6.8	2.9	2.9

TSF Option 1 consists of a valley fill impoundment, located in the same catchment area considered by previous authors (ALB Engenharia Dam 002 outline indicated by blue dashed line in Figure 18-5). SRK has expanded this alternative to provide sufficient storage capacity for all tailings produced over the LoM period. The main impoundment would be located to NW of the facility and a second smaller saddle dam constructed to NE (Figure 18-6).

The embankment would consist of a starter dam designed to provide a minimum of two years of the projected tailings storage production. The embankments would then be progressively raised using the downstream construction method. Tailings deposition would occur via spigot deposition initially from the main embankment, extending further around the saddle embankment and northern sector of the facility as it is expanded.

Slurry discharge from the spigots will be used to create an above water sub-aerial beach (BAW) from which tailings will drain and consolidate. A rotational deposition plan is required to maintain the beaches against the embankment crests and the supernatant pool in the planned area of the impoundment, away from embankment crests. This will result in thin lift tailings deposition. Tailings solids from the slurry will settle along the beach and free water will drain to the supernatant pool. Additionally, water seeping upwards from the consolidating tailings will flow by gravity to the pool. The pool will be always maintained away from the main embankment. Initially, the supernatant pool will be positioned at the upstream end of the facility until deposition commences from the upstream saddle dam. Subsequently when the facility has a main and upstream saddle dam, the pool will be positioned centrally, away from both embankment crests.

The TSF supernatant pool reclaim system will be composed of a centrifugal pump system mounted on a floating barge. Supernatant pool water will be pumped back to the plant via a return pipeline that will be routed in the utility corridor along with the tailings delivery pipeline.

For the management of emergency overtopping events, an allowance for a spillway has been included in the preliminary costing for each option. Spillways are required to manage inflows from storm events, safely discharging excess flows whilst maintaining the minimum freeboard.

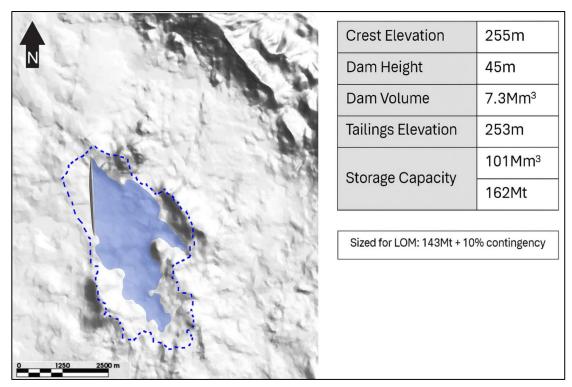


Figure 18-6: TSF Option 1 Layout and key metrics

TSF Option 2 SE of the mine site would utilise two cells for storage of conventional slurry tailings deposition (as per Option 1) for approximately 12 years of tailings production. During Year 12 of operations, a new Deep Cone Thickener (DCT) would be installed close to the TSF. Tailings deposition would switch to paste (65-70% solids w/w) from Year 13. Deposition of paste thickened tailings from a series of elevated discharge points on the adjacent hillside, allows development of a tailings cone above the previously filled tailings paddocks (2% average beach slope assumed). A general arrangement is included in Figure 18-7. Given that the paste tailings will contain very little excess water, only stormwater runoff will require storage in each of the previously constructed paddocks. SRK has assumed a 200 m standoff distance from silica cap pit outlines, to minimise the risk of resource sterilisation and to allow a future blast zone radius to be maintained. At this stage of the TSF option study, tailings storage within the volume of the mined out Silica Cap pit has not been considered, but may be a viable option to consider in the future.

The south cell would be constructed first and used as a starter facility given that it requires a smaller volume of embankment fill. This would be followed by construction of a second cell (North Cell). Deposition in these cells would utilise slurry deposition from spigots located on the perimeters of the embankments only. Following this, the remaining capacity would consist of central discharge of thickened paste tailings, deposited from multiple points on the elevated topography SW.

This design concept mimics the form of the nearby Sossego TSF, which takes on a similar geometry (concave beach slopes vary between 1-5%, average 1.3%). Beach slope angles should be confirmed with rheology testing and field trials during later stages of design. SRK has used a 2% average as the basis for 3D volumetric modelling, which is considered reasonable if tailings are thickened to paste consistency.

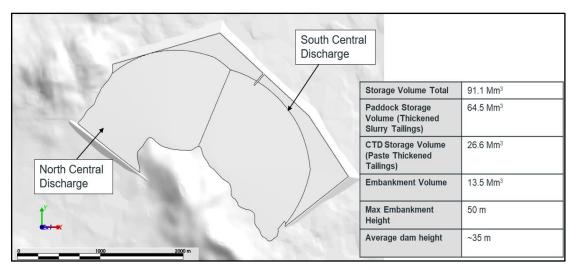


Figure 18-7: Option 2 - Central Thickened Discharge

TSF Option 3 consists of a side hill impoundment structure, located SW of the deposit (Figure 18-8). This has been sited on gently sloping ground above the anticipated flood lines of the adjacent river valley. This option would be constructed using waste rock from the open pit mine and would consist of a starter embankment, followed by a series of downstream embankment raises. The site is also severely constrained by the river to the south and southwest of the site, which would also risk toe erosion of the dam during flooding.

All tailings in TSF Option 3 would be deposited as slurry using perimeter spigots. The possibility of depositing thickened paste tailings from further up the hill was explored, to form a cone of tailings towards the perimeter of the TSF (as per Option 2 above); however, this was deemed inefficient, as the gain in capacity was small and a number of saddle dams would have to be constructed to prevent tailings flowing to the north over natural topography.

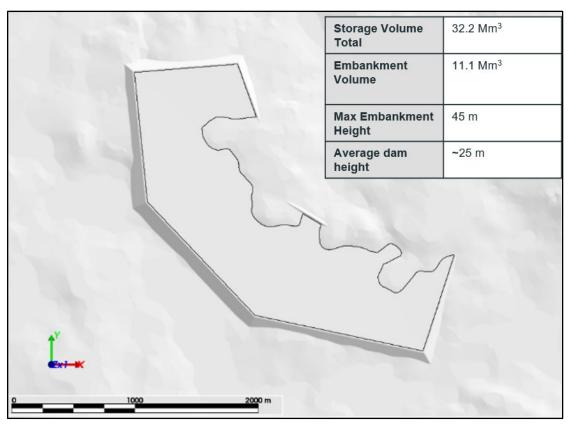


Figure 18-8: Option 3 General Arrangement and Key Metrics

TSF Option 4 would utilise a paddock-style impoundment to the south of the mine (Figure 18-9). This option is simple to construct but would use a large amount of embankment fill material compared to the storage volume. This option was limited in maximum height to 45 m, given the likely visual impact across the adjacent floodplain areas and settlements located west. There may be potential for additional storage capacity if this structure was raised; however, it would not be feasible to store the entire LoM tailings production at this site.

Like other options, deposition would be from spigots positioned at regular distances around the inner crest of the embankment, to maintain a regular beach slope safe beach length. During closure, the concave beach would have to be filled in so water would run off in the long term and the beach would not have to be managed.

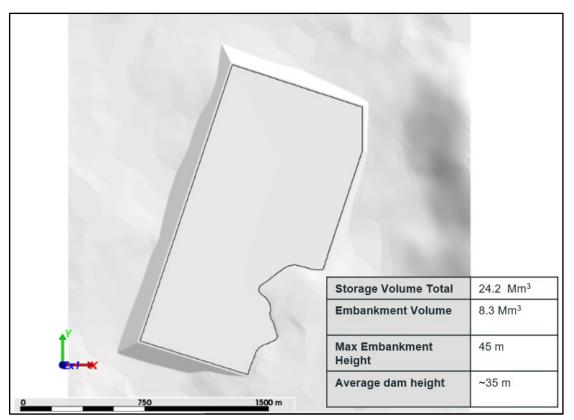


Figure 18-9: Option 4 General Arrangement and Key Metrics

18.3.7 Alternatives Trade Off

A high level alternatives trade- off study was completed to evaluate the relative differences between the options under a range of assessment factors, summarised in- Table 18-4. These criteria are not weighted, so a score or ranking has not been assigned to the options. The purpose of this options assessment is to qualitatively compare various technical and environmental criteria, to understand relative project risk associated with each development scenario.

Table 18-4: TSF Options Constraints High-level Analysis

Constraint	Option 1	Option 2	Option 3	Option 4
Licence/Land Acquisition	High	Low	Medium	Low
Flood Risk	Low	Low	Medium	Low
Communities	Low	Low	Low	Medium
Protected areas / conservation units (and buffers)	Low	Medium	Medium	Low
Land use / biodiversity value	Medium	Medium	Medium	Medium
Protected Caves	Low	Low	Low	Low
Cultural sites/ quilombola areas	Low	Low	Low	Low
Legal reserves	Medium	Low	Low	Low
Permanent Preservation Areas (APP)	Low	Low	Low	Low

TSF Option 1 was generally assigned favourable rankings, given its location in a small catchment located away from communities and protected areas (buffer zones close to major rivers). In terms of biodiversity value it is situated in farmland and grazing areas and a forested valley, meaning areas of natural woodland would be impacted.

TSF Option 2 is located mostly at the head of a catchment, however, as the surface area is quite large and the second cell sits within 500 m of a major river. Flood mapping should be completed to confirm low risk of ingress during design storm events. There is also evidence of abandoned local artisanal workings in the area, so communities are unlikely to be impacted by construction of the TSF. Finally, like TSF Option 1, the TSF would be located upstream of protected areas, and would require the clearing of farming and forested land for its construction.

TSF Option 3 has been assigned a Medium risk level for the surface water catchments constraint as it is situated on the hillside above a large tributary which flows into the adjacent protected area. The only other risk identified is that is uses a significant area of farmland below the large footprint area, but the footprint is smaller than other options.

TSF Option 4 has the fewest constraints, with only the possibility of impacting communities as there is a small water storage dam located upstream of the TSF, and the western embankment would be located to a small local road. The land is also currently being used as farmland..

18.3.8 Material Take Offs and Cost Estimation

Introduction

SRK has prepared detailed capital, sustaining capital and operating cost estimates for Options 1-4. These are based on the earthworks schedule, Material Take Off (MTO) and major equipment lists prepared for each component of the tailings dewatering, transport and surface storage designs presented in the preceding report sections.

Unit rates are aligned with those presented in the ALB Engenharia report, which were benchmarked from similar projects in the region. Where comparable unit rates are not available from these projects, SRK used rates derived from recent projects in the region. A summary of the rates used in cost estimation is included in Table 18-5.

Table 18-5: PEA Unit Rates: Earthworks and Major Equipment Items

Description	Unit	Rate (BRL)
Site preparation		
Topsoil stripping and clearance to 0.2 m	m³	5.50
Excavation soil	m³	18.9
Excavation rock	m³	49.0
Embankment Construction		
Fill: Quarried rock 0-800 mm hauling, placement, compaction	m^3	12.5
Fill: Coarse filter material <75 mm hauling, placement, rolled, compacted	m^3	18.9
Fill: Finer filter material <37.5 mm hauling, placement, rolled, compacted	m³	50.0
Lining System		
Sand bedding layer supply and installation	m^3	50.0
1.5 mm HDPE liner supply and installation	m^2	19.4
Drains		
Gravel hauling, placement, compaction	m^3	50.0
Geotextile supply and installation	m²	6.6
Decant		
Floating barge	No.	1,390,000
Return water pipeline	m	297

Description	Unit	Rate (BRL)
Tailings Pipeline		
Slurry tailings delivery pipeline	m	594
Thickened tailings delivery pipeline	m	1,188
Tailings Deposition (Opex)		
Slurry deposition (Maintenance, repositioning, operations, etc.)	t	0.56
Paste deposition (Maintenance, repositioning, operations, etc.)	t	1.11

Capital Costs

Capital costs for tailings storage have been determined from first principles using MTO from TSF volumetric modelling.

The following items have been included:

- over-excavation of unsuitable material from the footprint area of each Zone of the facility;
- bulk fill volumes for starter embankments (loading, hauling, screening and placement of till to form embankment);
- bulk fill volumes for embankment/filtered tailings facility starter embankments (loading, hauling, screening placement of till to form perimeter berms);
- provisional cut/ fill volumes for channel construction, including quantities of waste rock for channel lining activities;
- fill volumes for underdrains and over drains (gravel); and
- allowance for a standalone pyrite tailings storage facility adopting the same location HDPE liner requirement and concept design presented by ALB Engenharia (2025).

For thickened tailings alternatives (TSF Option 2) allowance for a DCT and all associated infrastructure has been included. Costs for these items were based on quotations provided by FLSmidth.

Sustaining Capital Expenditure

The sustaining capital costs have been estimated to include anything required for expansion post first two years of deposition. This cost includes infrastructure required for later raises or stacks including:

- embankment fill;
- embankment raises and development of new TSF cells;
- engineered cover systems (closure phase);
- additional monitoring instrumentation;

Operating Costs

Operating expenditures consist of the costs associated with tailings placement. This includes the ongoing dewatering costs, tailings pumping and tailings pipeline extensions. Allowance has been included for return water pumping to the process plant.

18.3.9 TSF Capital and Operating Cost Estimates

SRK has prepared a capital expenditure, sustaining capital expenditure, operational expenditure and closure cost estimate for each TSF option. These are presented in Table 18-6.

A preliminary and general cost has been assumed to be 10% of the project cost. This includes mobilisation of plant, establishment of site facilities, temporary works, insurances, permits, and other general overheads necessary to commence and support construction activities.

Table 18-6: Planalto TSF Options: Capital, Operating, Closure Expenditure Summary

Project Capital ('000 USD)					
Line Item Option 1 Option 2 Option 3 Option 4					
Preliminary and General	827	1,080	542	717	
Site Preparation	1,260	1,566	674	525	
Dam Construction	3,174	5,796	2,118	2,467	
Surface Water Management	500	-	2,110	2,407	
Drainage	194	323	252	262	
Lining System	-	-	-	-	
Tailings Delivery	2,566	2,523	1,882	3,250	
Return water system	571	565	485	656	
Monitoring	7	25	11	14	
Sub-Total	9,100	11,879	5,964	7,892	
	Sustaining Cap		-,	7,000	
Line Item	Option 1	Option 2	Option 3	Option 4	
Site Preparation	3,194	8,493	6,614	5,083	
Processing Equipment	-	24,558	-	-	
Dam Construction	16,135	35,709	27,216	20,965	
Surface Water Management	-	-	-	-	
Drainage	649	1,076	841	874	
Lining System	-	-	-	-	
Tailings Delivery	3,079	3,028	2,258	3,900	
Return Water System	-	250	250	-	
Monitoring	14	50	22	29	
Sub-Total	23,072	73,164	37,201	30,851,634	
	Operating Cos	ts ('000 USD)			
Line Item	Option 1	Option 2	Option 3	Option 4	
Slurry Tailings Placement	16,160	10,320	5,151	3,87	
Paste Tailings Placement	1	8,512	-	-	
Sub-Total	16,160	18,832	5,151	3,872	
Closure ('000 USD)					
Line Item	Option 1	Option 2	Option 3	Option 4	
Cover System	5,901	3,357	4,357	3,422	
Water Management	-	-	-	-	
Sub-Total	5,901	3,357	4,357	3,422	
Grand Total	54,234	107,232	52,674	46,038	
Cost Per Tonne	0.34	0.74	1.02	1.19	

TSF Option 1 has the lowest cost per tonne of tailings, mainly due to the low cost of raises beyond the starter embankment (relative to other options). No additional dewatering equipment is required, other than high rate thickeners which are already included in the process plant mechanical equipment list.

TSF Option 2 incurs significant sustaining capital costs, which are associated with installation of a DCT for tailings dewatering during Year 13. The additional costs associated with embankment construction (Northern Cell) also contribute to higher estimated values in this section. The proximity of the Silica Cap pit and Main Pit which produce significant quantities of construction grade waste rock mitigate embankment construction costs.

While TSF Options 3 and 4 do not accommodate all the LoM tailings, they could be considered due to the very low upfront capital costs; however, it is estimated that TSF Option 3 would only have capacity for around 7 years of tailings production and TSF Option 4 would only hold 5 years of production (at 8 Mtpa).

TSF Option 2 has been selected as the base case option for this PEA study.

18.3.10 Risks and Opportunities

Project Risks

SRK has identified the following key risks following completion of this PEA study:

- TSF Option 2 (used for the PEA base case) lies wholly within the Planalto Exploration Licence boundary. The other modelled alternatives (ALB Engenharia and SRK) are located partly or wholly outside of the current Exploration Licence boundary. Access to additional exploration land is required to provide adequate areas for development of these alternative TSF options. Surface land rights access will be required for the definitive TSF development.
- SRK has completed volumetric modelling for all facilities based on assumed tailings
 density and beach slope values. SRK recommends that these assumptions are validated
 with additional tailings test work, once tailings material from pilot plant testing is available.
 TSF Option 2 is sensitive to lower beach slope angles, which could impact storage capacity
 in the paste thickened deposition cone. Sensitivity analysis on beach slope (and density)
 assumptions should be completed at the next phase of design, to assess impact on storage
 capacity for each alternative.
- The acid rock drainage and metal leaching potential of the tailings has not been fully assessed, and one of the geochemical samples from the Cupuzeiro zone contains elevated sulphide material (pyrite). An allowance for construction of a 3.0 Mm³ fully lined pyrite TSF has been included in the PEA cost estimate to address this risk. This design should be reviewed once geochemical characterisation of the RoM feed and resulting tailings is progressed.
- The acid rock drainage and metal leaching potential of waste rock (to be used to construct tailings dams) has not fully been assessed. This may have implications of the suitability and availability of construction materials for the dams. SRK recommends geochemical characterisation of these materials at the next phase of design.
- The foundation conditions beneath the dams are currently unknown, if unfavourable
 conditions exist the slope geometry may require changing to a reduced overall slope angle.
 This would increase the volume of material required for dam construction and a reduction
 in storage capacity. Geotechnical investigations are recommended at TSF Option 1 and
 TSF Option 2 locations to characterise foundations materials at each site.

Opportunities

- The are significant opportunities to expand the storage capacity of TSF Option 1, which is located within a small standalone catchment area in favourable topography for development of a valley impoundment type TSF with high storage capacity and low dam wall volume.
- There is an opportunity to significantly reduce footprint areas for TSF development by utilising paste thickened / CTD technologies on this project. Paste deposition also significantly reduces the volumes of excess contact water to be managed on the TSF. Closure of the facilities will be simplified, given that tailings material can be incorporated in the engineered cover system to form a water shedding surface. This approach was utilised successfully for thickened tailings deposition at the nearby Sossego mine and is likely to be viewed favourably by regulatory authorities.
- Further mineralogical and geochemical characterisation throughout the deposit to identify specific areas of elevated pyrite in the Cupuzeiro mineralisation may allow for selective mining and processing or enhanced blending options to improve management of tailings.
- Pyrite is currently being considered as a waste product to be managed. Further studies
 may indicate that pyrite produced may have value as a feedstock for sulphuric acid
 production supporting local fertiliser or other industrial uses.

Recommendations for future work

It is recognised that the project is currently at a Preliminary Economic Assessment stage and as such, further design work is required to progress designs to Prefeasibility Stage. Recommendations for future work include:

- Engage with surface rights owners and the owners of surrounding Exploration licences or mine concessions to secure additional areas for development of TSF facility options.
- Multi-criteria alternatives analysis, (Requirement 3.2 of the GISTM) includes an analysis of feasible sites, technologies and strategies for tailings management. It should be noted the goal of this analysis is to select an alternative that minimises risks to people and the environment and minimise the volume of tailings and water placed in external tailings facilities. To be able to carry out this analysis the knowledge base should be sufficiently developed; i.e. environmental, social, economic, and technical data need to be gathered before this analysis is commenced. This analysis requires multi-disciplinary inputs (mining engineers, processing engineers, environmental specialists, etc), with a project life cycle approach. Decisions made in the mining schedule could both negatively or positively impact the tailings management strategy.
- Progress PFS design studies covering TSF Options 1 and 2, which should include
 geotechnical investigations beneath proposed footprint areas, tailings and mine waste
 material characterisation (geotechnical, rheological and geochemical), hydrotechnical
 studies and closure design. Results from the MAA should be utilised to select the preferred
 alternatives for TSF development in terms of technology class and preferred location.
- Obtain quotes covering major equipment items (such as DCT) from equipment vendors to improve the cost accuracy of estimates presented to date. Cost estimates for earthworks items should be updated based on equipment scheduling (mine fleet and contractor fleet, depending upon the preferred TSF location(s) for TSF development.

18.4 Water Management and Supply

18.4.1 Overview

The Planalto project, as presented in this PEA, will consist of infrastructure in both the Rio Cupuzeiro, displayed in Figure 18-10, and Rio Verde catchments. Water management infrastructure is required to manage the surface water runoff and seepage from the open pit, waste rock dumps and stockpiles. Additionally, a diversion of the Cupuzeiro Creek is required to route natural runoff to bypass the main pit.

Water management for the TSF will include pumping systems to remove both supernatant surface water and entrained tailings solution from the TSF and pump it back to the processing plant.

Water management infrastructure will be designed in accordance with best management practices to minimize the generation of contact water and safely convey stormwater. In cases where contact water is generated, such as seepage from the Waste Rock Storage Facility (WRSF), runoff and seepage from stockpiles, pit dewatering, or direct precipitation on the pyrite tailings storage dam, it will be managed appropriately. This includes testing and treatment in compliance with regulatory requirements.

The following water management infrastructure has been considered at this stage of the project:

- Diversions east and west of the main pit, including dykes to regulate water surface elevations and the large scale diversion of the Cupuzeiro Creek.
- Waste rock storage facility and stockpile drainage, including underdrains.
- TSF spillway and perimeter diversion.
- Water treatment facility (inflows from pyrite dam and stockpiles).
- Process water supply pond.

Future works in the PFS are required to advance the water management plan and to address sizing of ponds and minor channels.

Figure 18-10: Cupuzeiro Creek in January during rainy season

18.4.2 Water Supply

In this PEA, it is assumed that freshwater supply for the process plant can be sourced from the Cupuzeiro Creek approximately 1.5 km from the plant infrastructure. A suitable off-take from the river and offline channel reservoir will need to be assessed in future studies. USD 1.0M has been allocated in the cashflow model for this process water pond.

SRK completed a high-level streamflow assessment utilizing a regional gauge and scaled the flows to the Cupuzeiro catchment area to assess the potential water availability for the project from this source. In the State of Para, maximum abstraction rates for a single user are limited to 20% of the total grantable flow of the watercourse section considered for the calculation of water availability. The findings of the assessment suggest that direct withdrawal from the river does not meet the plant demand (283 m³/h) and a storage pond is therefore required upstream of the plant to accumulate water in the wet season to make up shortfall in the dry season. The pond was sized and costed to store a 4-month supply of the plant's freshwater demand. Its primary purpose is to meet the plant's freshwater requirements during startup and periods of drought. A site wide water balance, as discussed in the subsequent section, should be developed during the next phase of the project to address the sizing of the process water pond with greater confidence, considering ability to use water generated on site from direct precipitation on the mining infrastructure. Further hydrological work and continued monitoring of the Cupuzeiro is required in future stages of the project.

18.4.3 Water Balance

A site-wide water balance has not been completed for the Planalto Project. SRK completed a high level assessment of contact water generation from the stockpiles and pyrite dam utilizing regional climate statistics and conservative runoff coefficients; this assessment estimates that a treatment capacity of some 200 m³/h will be required for contact water generated on site.

Further information is required from a hydrogeological model to advance estimates on contact water generated in the open pit. In future studies, a site wide water balance should be developed considering the following aspects:

- Surface runoff from precipitation on mining infrastructure.
- Evaporation from ponds and pits.
- Process water requirements.
- Treatment demands.
- Downstream discharge capacity.

18.4.4 Water Management Structures

The following water management structures are anticipated to be used for the project:

- Diversion Ditches: Diversion ditches for non-contact water will be required around the TSF, open pits and other sources of contact water generation.
- The East Pit Diversion of the Cupuzeiro Creek has been designed by ALB Engenharia to a 48 hour rainfall depth, 25% larger than the 1:10,000 year rainfall, representing a probable maximum precipitation (PMP) scale event (however, PMP should be classified in future studies) it has a trapezoidal cross section with a base width of 8 m and a minimum depth of 2 m and 1:1 side slopes, with a design water flow capacity of 144 m³/s. The largest flow rate of the Cupuzeiro Creek recorded by Lara from 2022 to the date of this report is 4.53 m³/s.
- This channel has a large cut into original ground and is lined with HDPE to reduce water infiltration to the pit.

- The West Pit Diversion is also designed to the PMP scale event and has a trapezoidal cross section with a base width of 1 m, a minimum depth of 1.5 m and 1:1 side slopes.
 Small scale diversions will be required to limit contact water generation at other mining infrastructure locations.
- **Underdrains:** Internal drainage for stockpiles and waste rock facilities are required to convey and control water on site. Underdrains will have a trapezoidal section with a core composed of rockfill (D₅₀ = 300 mm) and enveloped by transition material. The base will have a regularization layer consisting of gravel and sand. Sizing of the underdrains will vary based on the catchment area reporting to the drain.
- Collection Ditches Collection ditches will be required around the stockpiles and waste rock facilities. Collection ditches will be designed to a lower return period and will be sized in future studies.
- Collection Ponds: Minor ponds and sumps will be required to manage contact and noncontact water.
- **Freshwater Supply Pond:** A freshwater supply pond upstream of the processing plant is required to meet the freshwater requirements during startup and periods of drought.

Water management infrastructure was designed and sized at a conceptual level by ALB Engenharia. SRK reviewed the design and cost estimates, adding allowances to address uncertainties and information gaps identified in the existing studies.

18.4.5 Estimated Costs

Costs for water management have been summarized in Table 18-7. Quantities were estimated by ALB Engenharia and costed by applying unit rates. Unit rates were aligned with those applied to the construction of the tailings management facility, and are listed in Table 18-7. SRK added a cost contingency for drilling and blasting in the West Pit Diversion due to uncertainty in ground conditions at a unit rate of USD 147.4/m³.

Table 18-7: Water Management Cost Estimate

Details	USDM	Basis
West Pit Diversion and Dykes	4.2	Costs estimated by SRK using benchmarks based on ALB Engenharia Design.
East Pit Diversion and Dyke	1.4	Costs estimated by SRK using benchmarks based on ALB Engenharia Design.
Waste Rock/Stockpile Drainage and Collection	8.4	ALB Engenharia Capital Cost Estimate.
Freshwater Supply Pond	1.0	Costs estimated by SRK using benchmarks.
Water Treatment	*	Water Treatment has been included in Plant Design Costs
Total	15.1	

18.4.6 Risks and Opportunities

Project Risks

SRK has identified the following key risks:

- Costs of hydraulic structures are sensitive to hydrological and hydraulic modelling inputs. Increased flow rates can impact channel dimensions and erosion protection requirements. Designs used for the cost basis of this PEA are completed at a conceptual level and will change over time as understanding of the hydrological system advances. Establishing automatic surface water level and flow monitoring stations so that a site-specific model can be compiled to refine understanding of this hydrological system will help reduce uncertainty in available water resource and optimise design and costing of water infrastructure.
- Brazil's distinct dry and wet seasons pose water management challenges both in freshwater supply and contact water generation.
- The Cupuzeiro East Diversion requires a significant cut into existing ground and the geotechnical conditions are currently unknown. Costs for drilling and blasting into bedrock significantly increases the potential cost. SRK has included a contingency for drilling and blasting in the revised costs.
- In the PEA, it is assumed that only runoff and seepage from the pyrite dam and stockpiles
 require treatment. Future works on the water and load balance for site should be completed
 to confirm this assumption.
- Water supply has been costed at a conceptual level, river offtake systems are dependent on regulatory assessed environmental release flows.

18.4.7 Recommendations

The following studies are recommended in order to develop the water management designs for the project:

- Hydrometrical baseline characterization to refine climatic and hydrological inputs for infrastructure design and water quality modelling. The baseline program should include installation of local and reference continuous hydrometric stations for streamflow characterization and local meteorological stations for climatic characterization.
- Climate change assessment to evaluate effects to climate and associated parameters (i.e. streamflow and evaporation rates) and the associated impacts on infrastructure, mine operations and closure planning.
- Baseline water quality monitoring program to characterize the baseline concentrations in the receiving environment.
- Mixing zone assessment in the receiving environment of the Cupuzeiro River to establish baseline conditions and available dilution capacity for project discharge.
- Advance the geochemical characterization to establish expected and worst-case water quality estimates from mining area including the pit wall, waste rock and tailings.

- Predictive water quality and load balance model to develop expected and worst-case water quality and water volumes for site water management planning. This assessment should consider dry, average and wet under both current and future climate conditions and represent water flow and quality of the receiving environment.
- Hydrogeological model to establish potential effects of the project on the regional groundwater system and magnitude of inflows to the open pit (considering the channel realignment and dykes), and groundwater fluxes from the TSF.
- Dam breach assessment to establish the dam classifications for all water and tailings storage dams.
- Conduct a drilling program to assess the geotechnical conditions at the footprint of the East Pit (Cupuzeiro) Diversion, to address uncertainty in excavation materials.

18.5 Site Infrastructure Requirements

18.5.1 Overview

The project requires infrastructure such as buildings, civils, utilities and services to support the mining and processing operations.

18.5.2 Internal Roads, Civil works & Earthworks

The project's internal road system will be composed of several access roads that connect the various areas to each other. Bulk earthworks, site roads, and general area civil works around the plant and infrastructure have been estimated by ONIX.

18.5.3 Administrative & General Facilities

The following summary descriptions are drawn from the descriptions provided by ONIX in their technical report and which are also summarised in the DRAFT Integrated Economic Development Plan (PAE) (PML, January 2025). See Figure 18-11 for the layout of the administrative and general facilities.

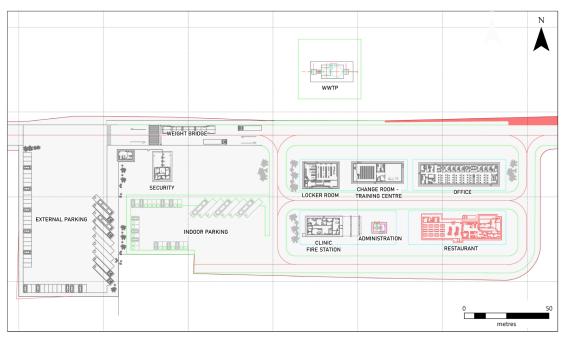


Figure 18-11: General Arrangement: Infrastructure Area (ONIX_R3_Data_2025_AUG)

Construction Methodology

Buildings will have either masonry walls with wooden or steel roofing sets and appropriate roofing materials (roof sheeting or tiles depending on size) or comprise of a pre-engineered structure with masonry infill or external cladding and sheet roofing. In some cases, Lara may opt for prefabricated buildings (or containers buildings) placed on concrete plinths. Foundation will be dictated by geotechnical conditions although for these low rise (1 or 2 storey) buildings, are envisaged to be strip, pad, raft foundations, and potentially, pier and beam if required. Surrounding the buildings will be an external, demarcated, walk-way, with adjacent vehicle parking or sufficient area.

Gate House / Security Centre

A gatehouse and main entrance gate will be positioned on the access road to control ingress / egress to the site. The following will be located at the main gate:

- Waiting room.
- Parking.
- Weighbridge.

A security centre will be located adjacent to the gatehouse from where perimeter and area security will be controlled (CCTV monitoring, access control monitoring, patrols, inspections).

Main Office

The main office and entrance building (circa 528 m²) is designed to house administrative, technical and managerial support activities and includes:

- Entrance and reception area.
- Individual offices and open plan office space.
- Meeting rooms.
- Sanitary facilities.
- IT and server area

Change house and ablutions block (mine, plant and site operators)

The building (circa 275 m²) will be the main changing rooms, bathroom and ablutions to meet the demand of the Project and will include:

- Men's locker room with 160 lockers and sanitary facilities sized for 60 people per shift.
- Women's locker room with 45 lockers and sanitary facilities sized for 30 people per shift.

Centralised Warehousing

The concept is for a centralized warehouse, designed to meet the storage and distribution needs of the plant and general facilities (noting the Mining Contractor will have separate storage at the Contractor's yard). The complex will consist of:

- a covered storage building (circa 600 m²) with storage bays and racking, and
- an outdoor storage area with approximately 880 m², intended for the storage of larger or weather durable items and in time, additional relocatable storage units (containers) may be added to the outdoor storage area.

The warehouse will be enclosed with fences and metal gates to ensure the safety and control of stored materials. The layout of the warehouse will be designed to ensure easy access for transport, loading and unloading equipment, optimizing the movement of materials, with storage systems that make it easy to locate and access items.

Within the yard, there will be ample room for manoeuvring of logistics trucks, loading and unloading equipment, facilitating logistics.

Training Centre

The training centre will compromise a single building (circa 315 m²) with a number of rooms designed as a training and meeting centre for operational and administrative staff. There will be a main hall which will be a flexible space, adaptable to different layout configurations, with a nominal capacity for 100 people, ideal for training and work meetings, and the required support facilities, including bathrooms, a storage room for training materials, and a small kitchen.

Restaurant / Cafeteria

This building (circa 490 m²) will house the central cafeteria and an industrial kitchen to cater for shift employees and include:

- Cafeteria area with the capacity for 120 people simultaneously.
- Kitchen which is equipped for large-scale production of meals.
- Support facilities for the operation: cold rooms, storage rooms, ablutions etc.

Medical Centre / Emergency Response

The emergency response centre is split into two components, a medical centre / clinic and a fire brigade centre. These facilities are for first response after which regional facilities in Parauapebas or Canaã dos Carajás. The centre will include:

- Individual offices equipped for medical examinations and care.
- Space reserved for rest and recovery of patients.
- Bathroom and ablutions.
- Ambulance Shelter: Covered and protected area for parking and quick access for the ambulance.
- Fire Brigade Vehicle Shelter: Covered area for parking and maintenance of the emergency vehicle.

The medical centre will be equipped to perform first aid and occupational examinations, according to current legislation.

Fuel Storage & Dispensing

Lara will control fuel delivery, storage and dispensing to mine, plant and ancillary mobile equipment. Lubricant storage and dispensing for mine equipment will be located at the Contractor's yard. The conceptual project foresees two 200,000 L tanks (S10), which occupy an area of 245 m².

Due to the fuel storage capacity, ANP authorization and environmental licensing will be required, according to relevant legislation and technical standards, especially the following (according to ONIX_R3_Data_2025_AUG):

- Laws 6938/81 and 9605/98;
- CONAMA Resolutions No.: 09 / 20 / 273 / 237 / 313 / 319:
- ANP Ordinance No. 116;
- ABNT Standards No. 13.783 / 13.784 / 13.786 / 14.605.

At the next stage of study, fuel storage and dispensing may be split between a facility in the Mining Contractor's yard, and a general facility for plant and ancillary equipment.

Logistics (Truckers) Welfare Room

Delivery and concentrate logistics drivers will wait beyond the main entrance until requested to enter to deliver to the warehouse or be loaded for concentrate transport. A welfare / waiting room will be located near to the front gate and will include:

- A waiting room with seating.
- A small kitchen area for snacks and refreshment.
- Sanitary facilities / ablutions

Waste Sorting and Recycling Centre

The waste sorting and recycling centre (also termed the Disposable Materials Centre or CMD) consists of two storage sheds and an external area, designed for the storage, separation and sorting of waste, in accordance with environmental legislation.

- Shed 1: approximately 153.00 m² intended for the storage of materials classified as hazardous waste, including oil, greases, electronic scrap, batteries.
- Shed 2: approximately 230.00 m² intended for the storage for the storage of non-inert wastes, including aluminium, copper, wood, lamps, glass, rubber, plastic and paper.
- Outdoor area: approximately 2000 m² intended for the storage of disposable materials that do not represent an environmental risk.

The CMD is designed to optimize the flow of materials, facilitating separation, sorting and storage. The division into specific warehouses ensures safety and compliance with environmental legislation.

18.5.4 Mining Contractor Yard

Related to mining infrastructure under the Mining Contract, the Mining Contactor will be responsible for the following, which is included in the contract rate and mobilisation fee:

- mobilisation, operation and maintenance of buildings and support equipment to maintain the Mining fleet and facilitate their operation;
- construction and maintenance, including dust suppression, of on-site haul roads around the mining area;
- supply and use of explosives;
- provision of management, operation, and maintenance personnel;
- construction and maintenance of water management infrastructure around the mining area to control run-off and pollution control.

Lara will designate an area for the Mining Contractor facilities. The specific buildings and facilities within the yard area are envisaged to include but not be limited to:

- contractor's offices;
- mobile equipment workshop;
- warehousing;
- tyre storage and tyre change area;
- surface water management and collection for contact run-off within the Contractor's area.
- reticulation of utilities within the compound (electricity, water, compressed air etc).

18.5.5 Explosives Storage / Emulsion Yard

The explosives storage compound will comprise buildings to store:

- detonators;
- primers;
- ammonium nitrate.

An emulsion yard will be situated near the site with a concrete platform and 30 tonne emulsion storage tanks with designed vehicle loading / unloading bays.

Explosives specifications, usage, resupply timing, and resulting storage requirements will be determined. The storage area and emulsion yard will be secured with high specification fencing and access control.

18.5.6 Plant Support Infrastructure

The plant requires the following infrastructure, which is integrated within the plant compound and considered within the plant cost:

- buildings to house the processing equipment and materials handling (civils, structural steel, architectural etc);
- control rooms;

- consumables and reagents day store;
- plant workshop (for mechanical and electrical plant),
- warehousing and laydown area for plant spares;
- plant laboratory;
- reticulation of services / utilities within the plant fence line (electricity, raw / potable water, compressed air, sewerage, firefighting water etc); and
- raw and return water ponds and water treatment (receiving from all infrastructure areas).

The area will be independently fenced and secure—d to manage ingress / egress. Within the plant site will be the concentrates storage and loading area.

18.5.7 Site Wide Services / Utilities Reticulation

Lara will develop site wide distribution systems for utilities, and these will also be bought to the fence line of the plant and the Mining Contractor's yard:

- Electrical distribution at 13.8kV to consumer substations within the plant substation(s), administration area substation, raw water dam substation, and mining area substation.
- Raw water reticulation from the raw water storage facility.
- Surface water management, run-off collection and management
- IT / Communications networks including for phone and internet access.
- Firefighting storage, reticulation, and hydrants.
- Potable water treatment plant, storage and reticulation system
- Sewerage and wastewater reticulation to a sewerage treatment plant with drainage field
- Waste collection and sorting area (the Disposable Materials Centre).
- Security services.
- Mobile vehicles

18.5.8 Estimated Costs

Capital Expenditure

The estimated direct cost for infrastructure items is presented in Table 18-8 noting where costs are provided by ONIX or estimated by SRK (cost accuracy +50/-30%). These costs exclude indirect, owners, and contingency costs, which are added at a project level. Where needed, the project exchange rate of 5.6 BRL:1 USD has been used.

Table 18-8: Direct Capital Expenditure: Infrastructure (accuracy +50/-30%)

Details	USDM	Basis
Project Access Road	1.5	Costs estimated by SRK using benchmarks
Mining Contractor's Yard	-	Mining Contractor
Explosives Storage	0.6	Scope of work defined by ONIX ENGENHARIA with costs estimated by SRK using benchmarks
Plant Support Infrastructure (Integrated)	-	Within Plant Capital Costs (ONIX ENGENHARIA)
Plant Laboratory Equipment	-	Under Owner's Costs (USD 0.5M)

Details	USDM	Basis
Buildings & Infrastructure	6.0	Scope of work defined by ONIX ENGENHARIA with costs
Services / Utilities	4.0	estimated by SRK using benchmarks
Electrical Distribution	8.7	ONIX ENGENHARIA Capital Cost estimate
Earthworks, Internal Roads, Area Civils	7.5	ONIX ENGENHARIA Capital Cost estimate
Total	28.3	

Operating Cost

For the purposes of the PEA, the cost for operation and maintenance of the infrastructure assets is assumed to be included in the G&A annual allowances.

18.5.9 Interpretation & Conclusions / Forward Work Plan

Interpretation & Conclusions

The concepts and descriptions are appropriate for a PEA study level and would support the planned operation as it is currently described. The source and prices have been reviewed by SRK and appear reasonable. There are a number of typical risks inherent the early-stage nature of engineering definition and scoping studies and accuracy of the capital and operating costs is currently at a low level.

Recommendation for Forward Workplan (PFS)

Access road trade off including interaction with the municipality road; there are options, and the shortest route is currently shown; this work can be combined with layout analysis. During the PFS, there will be an opportunity to investigate different technologies and systems to optimise building construction and cost to the life of mine.

18.6 Power Supply

18.6.1 Strategy

The Planalto Project is well positioned with respect to the national grid transmission infrastructure with several possible connection options. To provide power to the project, the selected option for the PEA is a 31 km long, 138 kV overhead transmission line will be built connecting to the Integradora 500/230/138 kV substation (near to Canaã). This will give Lara access to the Brazilian electricity grid, which comprises over 85% renewable generation sources, and to the power market where power purchase agreements can be negotiated. The project's close proximity (3 km) to existing 230 kV and 500 kV transmission infrastructure presents the prospect of a connection at 230kV at a much shorter distance, and this opportunity is being explored by the Company.

18.6.2 Regional Infrastructure & National Grid

The Brazilian Electricity Grid comprises a national interconnected system managed by the centralised system operator and regulated by the Brazilian Electricity Regulatory Agency (ANEEL). The generation mix in Brazil is predominantly hydroelectric power (circa 53%¹ of installed capacity) and this source of generation, together with all renewable sources accounting for ~86%² of annual generation. Notwithstanding, the grid is still heavily reliant on hydroelectric as the primary dispatchable power.

Around 90% of the power sector in Brazil is privatised. The Brazilian power market allows consumers to negotiate short- or long-term virtual power purchase agreements (PPAs) to secure 100% renewable tariffs. The total tariff paid will be influenced by the connection voltage and also incorporate generation, transmission and distribution charges, along with taxes and sector charges.

The processing plant is within 3 km of both a 500 kV transmission line (LT 500 kV Serra Pelada - Integradora powerline) and two, 230 kV transmission lines (LT 230 kV Integradora – Carajás powerline) both originating from the Integradora 500/230/138 kV substation, which are common transmission voltages. These lines connect to two major substations, which are also in relatively close proximity:

- The major Integradora 500/230/138 kV substation (near to Canaã) is 31 km away
- The major 500/230/138kV Substation de Serra Pelada (near to Curionopolis) is approximately 37 km away.

18.6.3 Power Demand

The electrical demand for sizing of the substation and the transmission line was established from the estimated electrical load is summarised in Table 18-9.

Table 18-9: Estimated Power Demand

Details	Average Demand (MW)	Annual Consumption (GWh)	Comments
Mine	0.2	1.0	Allowance. Mining Contractor.
Plant, TSF, Water Supply	51.8	400.0	ONIX ENGENHARIA
Infrastructure	0.5	2.0	ONIX ENGENHARIA
Total	52.5	403.0	

18.6.4 Planalto 138 kV Grid Connection - Option 1

This proposed grid connection option is favoured by Lara and will comprise of the following components:

- Required works at the connecting substation NOVA CANAA.
- A 31 km, 138 kV single (or double) circuit overhead transmission line comprising pylons, conductors.
- Project 60 MVA, 138/13.8 kV Planalto substation comprising two parallel transformers (N+1).

¹ hc-insider-podcast/the-brazilian-power-market-with-adriana-waltrick (dated 27 August 2024)

² Brazil - Renewable Energy Infrastructure

The concept assumes that the 138 kV will follow one of the existing rights of way for either the 230 kV or 500 kV powerline into the vicinity of the project where it will turn east to meet the Planalto substation.

Lara Exploration Ltd will need to engage further with the relevant authorities to confirm capacity and viability.

18.6.5 Planalto 138 kV Grid Connection - Option 2

Lara contacted the relevant regional utility company regarding a connection and the following option was suggested along with a budget estimation for connection:

- Required works at the connecting substation NOVA PARAUAPEBAS.
- A 20 km, 138 kV single circuit overhead transmission line comprising pylons, conductors in urban classified (according to the utility company) areas.
- A 28.5 km, 138 kV single circuit overhead transmission line comprising pylons, conductors in rural classified (according to the utility company) areas.
- Project 138/13.8 kV Planalto substation comprising two parallel transformers (N+1).

The conceptual plan shows the 138 kV following one of the existing rights of way for either the 230 kV or 500 kV powerline into the vicinity of the project where it will turn east to meet the Planalto substation.

18.6.6 Alternative Connection

Lara is actively investigating an alternative power transmission option which would be to consider a 3 km, 230 kV loop spur from the LT 230 kV Carajas – Integradora transmission line directly to the Planalto Substation. Compared to the base-case, this concept would:

- Reduce capital cost for the transmission line construction (plus reduce land acquisition negotiations and costs for new pylons / wayleave) noting the cost for the step-down transformers would increase.
- Reduced losses and a lower tariff (e.g. circa USD 0.04/kWh): by connecting directly at the 230 kV transmission level as a Grid User with a 60 MVA power requirement, significant savings in power tariff costs compared to being a 13.8 kV utility connected user.

From the perspective of negotiating this connection, it is unclear whether the alternative would be more beneficial as agreeing the framework to modify the existing 230kV line could be more time consuming.

A trade-off study will be undertaken in the next phase of the project to determine options.

18.6.7 Estimated Costs

Capital Expenditure

A line cost of BRL 42.35M (USD 7.6M at an exchange rate of 5.6 BRL:1 USD) is estimated by the utility for the 138 kV option 2, which is selected as the base-case; it is assumed to include any works required at the grid substation but excludes permitting and related studies and permissions. A benchmark cost of USD 13.1M is estimated by ONIX for the main 138/13.8 kV substation. This includes the two transformers, all balance of plant and other works within the fence line.

The estimated direct cost for infrastructure items is presented in Table 18-10 noting where costs are provided by ONIX or the utility estimate. These costs exclude indirect, owners, and contingency costs, which are added at a project level.

Table 18-10: Direct Capital Expenditure: Power Supply (5.6 BRL:1 USD)

	•	,
Details	USDM	Basis
Transmission Line	7.6	Information obtained by Lara from the Utility for a 138 kV connection.
Main Project Substation	13.1	ONIX with SRK review against benchmarks.
Site Electrical Distribution	See Site Infrastro	ucture and Table 18-8
Total	20.7	

Tariff / Operating

The PEA has used a cost of power of USD 0.06/kWh, which is within the range of benchmarks and subject to power market pricing and exchange rates. This assumes Lara will access and negotiate a free market contract. The tariff is based on a review of benchmarks and includes all tariff components (generation, transmission, distribution, losses etc) and non-refundable taxes. Once constructed, the transmission line would be adopted by ONS and any maintenance charges assumed within the tariff.

18.6.8 Interpretation & Conclusions / Forward Work Plan

Interpretation & Conclusions

The power supply concept and costs are appropriate for a PEA study level and would support the planned operation as it is current described. The capital costs associated to the planned concept has been reviewed and appear reasonable and in-line with benchmarks. Confirmation of grid capacity at the proposed voltage level still needs to be clarified (noting that Lara has other options available to it). There are opportunities to explore different grid connection options due to Planalto's enviable position in close proximity to national grid infrastructure that may yield improved tariff levels. Should electrification of mining equipment be considered, power demand could substantially increase which could affect the solution.

Recommendation for Forward Workplan (PFS)

There are opportunities to explore different grid connection options due to Planalto's enviable position in close proximity to national grid infrastructure that may yield improved tariff levels. There is also the opportunity to negotiate long term renewable power purchase agreements.

Continue discussions with the local utility company regarding the 138kV connection and investigate transmission line alignment options.

Using a suitable power engineering company, explore the opportunities to connect at 230kV and investigate transmission line alignment options.

18.7 Logistics

18.7.1 Strategy

On average, the mine will produce around 130,000 wet metric tonnes (wmt) of copper concentrate per annum. The concept for this PEA is for concentrate to be transported by road truck the approximately 680 km to the port of Vila do Conde (Barcarena, Para State) where it will be loaded to ocean going vessels for shipping to destination ports. Bulk freight and container freight are options. The three logistics segments therefore are:

- overland transport by road;
- port operations, storage and ship loading;
- ocean freight.

Although Lara continues to monitor the situation, both: a) rail transport (the Vale operated rail system from Sossego, which could be accessed at Parauapebas, around 40km north of the project but subject to an agreement with Vale); and b) river transport and transhipping (along the Tocantins River from Marabá due to seasonal river level uncertainty), have been discounted at this stage.

18.7.2 Road Haulage

Options available to Lara for transporting the concentrate by road to the port include:

- Bulk cargo: single trailer trucks or B-train trucks with side or end tipping trailers would discharge direct to a warehouse at the port. Alternatively, a purpose designed rotainer system could be developed for overland haulage and port operations with bulk freight thereafter. The benefit of this system would be to reduce reliance on existing port facilities although would require purchase / leasing of specialist containers and equipment.
- Container cargo: container loading occurs at either the port (or near to the port) or at the mine; herein it is assumed container stuffing occurs at port as this negates the need to transport empty containers to the site. Road transport can occur as:
 - Bulk / big bags (break bulk) loaded in twenty-foot equivalent containers (TEU) typically carrying around 20-21 t (resulting in 6,000 containers per year). Sometimes heavy tested containers are use carrying 26-28 t. Containers are then delivered to container terminal onward travel.
 - Bulk cargo with loading to lined TEUs within a covered warehouse at or near to the port.
 - Containers are then delivered to container terminal for onward travel. Maximum container payload may be dictated by the receiving port / party.

The concept chosen for the PEA is bulk cargo option to port but this will be the subject of tradeoff studies at the Prefeasibility level. Road haulage will be outsourced to a specialist road haulage contractor who will provide suitable fleet and supply their own maintenance facilities within a USD/t rate. At the mine, the concentrate dispatch area will have a covered storage for concentrate. Front end loaders will load the trucks. The plant gate or mine gate will have a dispatch control point with weigh scale and tire washing system to avoid contamination.

18.7.3 Port

The Port of Vila do Conde is located near to the town of Barcarena, which is west of Belem City. The port is well established with a multipurpose berth, the Tecon container terminal operated by Santos Brasil, and recently inaugurated bulk liquids Ultracargo terminal. The multipurpose berth primarily services the large Hydro Alunorte Aluminium operation and also the Santos Brasil container terminal. Along the coast to the southwest are the side-by-side terminals of TGPM Grain Terminal and Imery's Caulim Kaolin processing plant and terminal. To the northeast are two grain terminals (owned and operated by Hidrovias and Unitapajos).

Lara understands there are development plans for the port including on both on the marine and landside aspects. Furthermore, it is understood there are a number of operators or private warehouses which are capable of receiving, handling and loading bulk and break-bulk cargo and loading to containers.

At the next stage of study, Lara will engage with the port authority and port operators to establish requirements. It is envisaged that a future selected partner at the port will provide the warehousing, handling and loading operations, including any equipment investments, within a USD/t rate.

18.7.4 Shipping

Typical freight parcel sizes are envisaged to be between 10kt and 20kt as part or full loads on bulk carriers.

It is envisaged that loaded Containers would be stored at the external warehouse before being batch delivered to the Tecon container terminal for onward transit.

18.7.5 Logistics Cost Summary

All off-site logistics infrastructure will be supplied and operated by third parties and as such, beyond the concentrate handling and truck loading facility within the process plant area, no capital costs are associated to concentrate logistics, as shown in Table 18-11.

Table 18-11: Assumed Logistics costs: Bulk / Container

Details	USD/wmt	Notes
Haulage	80.00	Distance of 680 km. Bulk bags on flatbed truck or bulk trailers.
Port Operations	20.00	Storage, handling and ship loading.
Ocean Freight	85.00	Bulk freight as 11 kt parcels including any fees.
Total	185.00	Logistics costs

18.7.6 Interpretation & Conclusions / Forward Work Plan

Interpretation & Conclusions

The concepts are appropriate for a PEA study level and would support the planned operation as currently described. The prices have been reviewed by SRK and appear reasonable. Along with the typical risks at this level of study, the key risk area related to logistics is the definition around options at the port (available capacity for bulk or containerised cargo). To mitigate this risk, the PEA includes a logistics cost which is considered to cover all alternatives.

SRK notes the port continues to be developed and as project studies are progressed, new options may be available in terms of terminal, warehousing options etc. Lara also continues to monitor the options for rail (Vale railway) or inland river transportation from Marabá, which may be an option in the future.

Road haulage pricing can differ depending on supply and demand and in the future the road haulage cost could reduce.

Recommendation for Forward Workplan (PFS)

- Logistics Study (overland, port and ocean freight).
- Lara will begin discussions with the port authorities and / or operators to support the future PFS and understand the available opportunities.
- Preliminary discussions with road haulage contractors to better define haulage cost range.

ITEM 19. MARKET STUDIES AND CONTRACTS

19.1 **Sales Contracts**

No sales contracts are yet in place for the project due to the PEA level of study.

19.2 **Market Studies**

Copper is indispensable across a wide range of industries due to its exceptional electrical conductivity, thermal efficiency, corrosion resistance, and recyclability. Significant amounts of additional copper are forecast to be required to support the traditional global sectors related to population growth, urbanisation, rising living standards and growth in developing countries, as well as the acceleration of the digitalisation and energy transition megatrends.

Global copper demand is expected to increase by approximately 10 Mtpa in the next decade from a current 28 Mtpa, much of this shortfall will need to be met from new mine supply. By the end of this decade as many as 80 new copper mines will need to be brought on line, requiring up to USD 250 billion in investments. By 2050, the annual copper demand is expected to grow to 50 Mtpa. 3,4,5,6

Existing mines face the challenges of lower grades, deeper extraction, and generally more complex orebodies, while new mine development is taking significantly longer to permit, being constrained by the growth of regulatory, environmental and sustainability requirements. Mine construction costs have increased significantly during the last decade. Large scale miners anticipate that copper prices will need to rise still further to incentivise them to bring new large scale copper mines into production to offset the many challenges they face.^{3,7}

New copper mine discovery has been declining over the last 20 years in terms of deposit discovery size and total number of discoveries each year, which further increasing the long term copper supply pressures.7

The copper metal market is currently generally balanced, however, there has been significant volatility during the last year which has underlined the fragility of copper supply which has been demonstrated via large reactionary price movements to single supply disruption events, Freeport's Grasberg Mine shutdown, or changes in US copper tariff policy. The longer term supply and demand dynamics for copper are predicted to be supply deficient by the end of the decade.4,5,6

⁶ Focus on critical minerals: Copper in the new green and digital economy

UK32689 Planalto NI 43-101 v16.docx

https://www.bhp.com/investors/economic-and-commodity-outlook/2025/08/economic-and-commodity-outlook

⁴ https://cdn.ihsmarkit.com/www/pdf/0722/The-Future-of-Copper_Full-Report_14July2022.pdf

⁵ WCC-Copper-Demand-Forecasts-Report pdf

⁷ https://www.spglobal.com/market-intelligence/en/news-insights/research/major-copper-discoveries

Lara's Planalto project will produce a copper-gold concentrate which will be smelted and refined internationally. Smelters charge a Treatment Charge (TC) for smelting the concentrate and a Refining Charge (RC) to refine the copper and by-product metals, of which gold will be the only by-product considered for Planalto. From 2012 to 2023, benchmark TC and RC averaged approximately USD 83/dmt (dry metric tonne) and USc 8.3/lb payable copper, respectively. This was generally insufficient to justify the capital costs of building new copper smelters, especially in the West; however, in China, provincial governments have actively financed copper smelters to boost GDP and employment. In addition, several new copper smelters have been built outside China in recent years, including in Indonesia, India, and the DRC. These new smelters are expected to significantly increase copper metal production and reduce the export of copper concentrate. In Indonesia, the government has enforced policies to increase incountry value creation, leading to the construction of new smelters. In India, the government has provided large incentive packages to encourage smelter construction.

There is a significant imbalance between the growth rates of smelter capacity and copper concentrate production. While smelter capacity is expected to grow by 6-7% over the next few years, mine production is only expected to grow by 2-2.5%. This imbalance has led to a sharp fall in TC and RC terms in 2024 and 2025. A report undertaken for Lara in 2025 by Deno Advisory, a specialist advisor on commercial and logistical matters related to concentrate trading, reports that Lara would expect to achieve a full sale of its forward book and in light of the projected, continued shortage in concentrates, and taking into account the considerable competition from new traders, for the purposes of this report, Deno will assume a fair projection for 10 year period from 2025 a benchmark TC of USD55/dmt, a copper RC of USD0.055/lb payable of copper, and a gold RC of USD5/oz which is relatively standard and stable for long term contracts.

19.3 Commodity Price Forecasts

Analyst's long-term consensus forecast metal prices have been sourced from SCP Resource Finance, a UK based financial institution with extensive experience in the copper-gold mining sector that analyses data from Bloomberg and FactSet, where the 2029 median price has been selected as the long term consensus price for copper and gold in this study. The long term consensus forecast price for copper reflect the looming supply gap as the median price forecasts in 2027 and 2028 are USD 9,938/t (USD 4.51/lb) and USD 10,353/t (USD 4.70/lb), respectively, with long term pricing predicted to be USD 10,494/t (USD 4.76/lb).

Gold is a relatively minor by-product metal in the Planalto project being smelted and refined as part of the copper concentrate and will be paid as a credit in the net smelter return payment to the mine from the smelter or trader purchasing the concentrate. Gold at Planalto contributes approximately 5% of the net revenue of the project. The gold market price has been considerably volatile during 2024-2025 but with an upwardly rising price driven by a weaker US dollar, lower interest rates, geopolitical uncertainty (safe-haven demand). Gold hit an all-time high in October 2025, with 15 October spot price being USD 4,163/oz. Analyst consensus on gold prices is variable, with a long term (beyond 5 years) median price projection of USD 2,572/oz.

Long term prices of USD 9,500/t Cu and USD 2,500/oz Au have been applied in the PEA, which compare to the 3-year average, long term consensus forecast and 15 October spot prices as presented in Table 19-1.

Table 19-1: PEA Commodity Price Assumptions

Commodity	PEA Prices	3 year Average Price to 15 October 2025	Consensus Long Term	Spot Price 15 October 2025
Copper	USD 9,500/t	USD 9,250/t	USD 10,494/t	USD 11,067/t
Gold	USD 2,500/oz	USD 2,434/oz	USD 2,752/oz	USD 4,163/oz

ITEM 20. ENVIRONMENTAL, SOCIAL AND GOVERNANCE

20.1 Introduction

The environmental, social and governance (ESG) input to this report has been prepared based on a desktop review of information made available to SRK. Key documents informing ESG commentary include:

- DRAFT Integrated Economic Development Plan (PAE) (Planalto Mineração Limited, January 2025).
- Technical Opinion in Evaluation of the Term of Reference for Preparing EIA/RIMA (CLAM Meio Ambiente, undated).
- Estudo de Impacto Ambiental (Soluções Socioambientais Ltda, December 2021).
- Work Plan (CLAM Meio Ambiente, June 2025).
- Water Bypass of Cupuzeiro creek around Planalto pit (ALB Engineering, May 2025).
- GIS database provided by PML.

20.1.1 Project Setting

The Planalto Project is located 20 km NE of Canaã dos Carajás and 9 km NE of the Vila Planalto community. The Carajás region has several active mining hubs such as Canaã dos Carajás, Parauapebas and Curionópolis. The closest mining operation to the Planalto Project is Sossego Mine 30 km to the west.

The project area encompasses farmland mostly utilized for cattle. There are no established indigenous or traditional communities within the area of direct influence for the project. A representative of the Atikum indigenous group is understood to live within the Canaã dos Carajás municipality (Municipal Culture Plan, 2022) but outside the area of direct influence of the project.

20.1.2 Land Use

The predominant land uses in the municipality of Canaã dos Carajás, according to studies conducted by Solução Socioambientais (SSA) (2021), include agriculture (cattle grazing pasture) and mineral exploitation. A reduction in natural forests and woodlands has been observed over time, the main driver of which has been livestock farming activities.

According to the public database provided by CECAV (National Centre for Research and Conservation of Caves), there are no mapped caves in the project area.

20.1.3 Protected Areas

The closest protected area to the project is the Campos Ferruginosos National Park (PARNA), which is classed as an Integral Protection Conservation Unit and within which no mining activities are permitted. The project is approximately 3 km east from the park boundary and 2 km east from the edge of the buffer zone that surrounds the park. The park protects samples of canga vegetation or ferruginous rupestrian fields, a rare type of ecosystem associated with iron-rich rocky outcrops, with the occurrence of endemic and endangered fauna and flora species, in addition to aquatic environments and caves.

20.2 Approach to Environmental and Social Management

20.2.1 Status of Assessment and Studies

A series of preliminary environmental studies aimed at characterizing the environmental conditions of the Planalto Project area were conducted by SSA in 2021, on behalf of previous project operators, Capstone. These studies included surveys of physical, biotic, and socioeconomic aspects, focusing on the collection of baseline data to support future stages of environmental licensing.

The main studies conducted by SSA included:

- preliminary environmental diagnosis;
- field campaigns;
- characterization of surface water bodies;
- initial socioeconomic survey; and
- basic environmental mapping.

The SSA surveys were conducted over a smaller area than the currently proposed project area and the data are now four years old and requires updating; however, the data remain a useful reference point for future studies at Planalto.

In 2025, Lara commissioned an Environmental Impact Assessment (EIA) process to be conducted for the project by CLAM Engenharia (CLAM), based in Belo Horizonte, in accordance with the Terms of Reference issued by State Secretariat for Environment and Sustainability (SEMAS) of the Pará State Government. The EIA process will include field studies to include data collection over wet and dry seasons and is due to be completed in Q2 2026. Planned field studies include air quality, springs survey, water quality, flora and fauna, socio-economic and speleology (caves). The need for a study on archaeology, historical and cultural heritage will be determined following consultation with regulatory authorities. The process will also include stakeholder engagement and public hearings.

To commence the EIA process, CLAM has prepared a gap analysis of environmental work completed by previous owners (Capstone) to identify the gaps that would need filling to meet the Terms of Reference issued by SEMAS. The following items have been identified as gaps and will be included in future work programmes:

- technical and location alternatives studies with comparison of alternatives;
- speleology/biospeleology (caves) studies;
- improvements to studies on fauna (insects) and vegetation (natural regeneration potential and characterisation of Permanent Preservation Areas). Studies to be undertaken in the wet and dry seasons.
- risk analysis;
- financial and environmental compensation;
- closure plan; and
- characterisation of tailings facility (environmental control measures).

The requirement for a study on alternatives is particularly relevant to the current stage of project development, when different concepts are still being considered. It will be important through this stage for alternatives to be assessed in terms of technical and ESG criteria and results of these assessments to be recorded.

At this stage of the project, Lara intends to conduct the EIA process and supporting studies in compliance with requirements of Brazilian legislation. Lara has not yet committed to specific sustainability frameworks, standards or good practice guidelines but will review this in the next stage of the project.

20.2.2 Stakeholder Engagement

Lara is in dialogue with a number of key stakeholders, including local authorities, local landowners, investors and partners, and will continue to do so as the Project progresses. No formal stakeholder engagement plan is currently in place and formal records of engagements are not kept. There is also no formal grievance mechanism.

As noted above, stakeholder engagement will also occur as part of the future EIA process. According to the EIA Work Plan, CLAM intends to undertake analysis of social vulnerability and the identification of social groups potentially more sensitive to the project's effects, such as women, populations living in poverty, traditional communities, children, adolescents, and the elderly. This will inform the engagement strategy for the project.

The current status of stakeholder relations and key stakeholder issues are not available at this stage. As the project progresses, it is recommended that Lara Exploration prepares a stakeholder engagement plan, maintains records of engagement and prepares a grievance mechanism for the recording and management of stakeholder issues.

20.3 Key Environmental and Social Issues

The salient environmental and social issues and material risks to the Project, identified through a review of studies and other available data, are summarized below. Recommended additional assessments, or preliminary potential management solutions, are also provided where relevant.

20.3.1 Potential Impacts on Conservation Areas and Biodiversity

The project is adjacent to protected areas, including Conservation Units, Legal Reserves and Permanent Preservation Areas (APP).

The closest protected area is the PARNA, which is classed as an Integral Protection Unit and no mining activities are permitted within its boundaries. The project is approximately 3 km east from the park boundary and 2 km east from the edge of the buffer zone that surrounds the park. Although the project is fully located outside the park and buffer zone and no significant direct impacts are expected, there is the potential for ecological connectivity through the north of the study area and the potential for changes to water quantity and quality in surface water catchments within the buffer zone of PARNA.

The current layout of the project extends across legal reserves. According to the Forest Code there is a requirement for every rural property to allocate an area defined as a legal reserve within the property boundary. The legal reserve must be conserved with native vegetation cover and the function of the legal reserve is 'ensuring the sustainable economic use of the natural resources of the rural property, assisting the conservation and rehabilitation of ecological processes and promoting the conservation of biodiversity, as well as the shelter and protection of wild fauna and native flora'. Legal reserves can be moved within landholdings, as long as environmental criteria are met at an alternative location. Lara can therefore relocate affected legal reserve areas, once approved by the environmental regulators, and no major challenges are expected with the process as mining is usually acknowledged as of public interest.

Permanent Preservation Areas (APP) are areas of vegetation that have been designated for protection because they have been identified as critical to the preservation of essential ecosystem functions, such as ensuring a clean water supply. The Forest Code requires that the vegetation in Permanent Preservation Areas be left intact, however, disturbance can be approved by regulators providing compensatory measures are provided such as commitments to protect other APP or financial payments.

In summary, the project layout has the potential to intersect several areas of conservation importance, however Lara intends to avoid these areas to the extent practical during the design process. The EIA process will fully characterize the project's impacts and determine the required controls and mitigations to be implemented prior to the project's commencement. Depending on the outcome of the EIA, and the potential for non-reversible impacts, it is expected that Lara may be required by the environmental regulators to provide financial compensation as part of its permit conditions.

20.3.2 Geochemistry

Waste Rock

SRK reviewed the technical note Acid Drainage Tests on Mining Waste / Low-Grade Ore for Stockpile Note, Lara Exploration 2025, which analysed 16 waste rock samples (Homestead, Cupuzeiro, and Silica Cap). Although the representativeness of the samples was not assessed, the analysis of the test results focused on the acid generation potential (AGP). The results indicated that Silica Cap samples have lower AGP, while shallower samples from Homestead and Cupuzeiro tend to exhibit higher AGP. The leachate analysis undertaken could be deemed to be an initial assessment, the test results indicated that several of the samples (a subset of 8 of the original 16 samples) (one Homestead and one Cupuzeiro) produced water quality in the test leachates with some elevated parameters (sulfate and fluoride). These elevated contact leachates would indicate that further characterization/assessment should be conducted to conclude if the water quality generated in a full scale waste facility would need additional management measures.

The geochemical classification of the samples, based on GARD Guide criteria and SRK's previous experience, revealed that most samples are classified as uncertain or non-acid forming (NAF), depending on the criterion used (Net Neutralisation Potential (NNP), Neutralisation Potential Ratio (NPR), or Net Acid Generating (NAG)). (Figure 20-1) However, the variability in the results highlights the need for additional studies, including additional leaching tests and humidity cell tests (HCT), to better evaluate the geochemical behaviour of the different waste rock types and the ability to use these materials in the construction of tailings dam embankments or other re-use purposes.

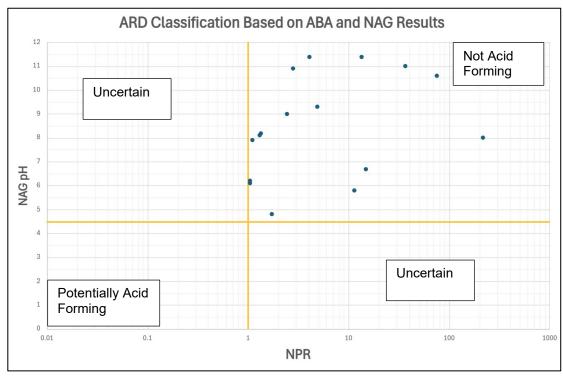


Figure 20-1: ARD classification based on NPR and NAG Results pit waste and lowgrade mineralization samples

Tailings

The PEA base case assumes that when RoM feed with elevated pyrite is processed, pyrite will be separated and deposited into a dedicated pyrite TSF to reduce the amount of pyrite entering the main TSF (Sections 13.5.2 and 17.3) and ensuring that the main TSF water will not require treatment. SRK reviewed a note provided by Lara which included the geochemical characterization of four tailings samples, none of which had undergone treatment to remove pyrite. Three samples were classified as NAF, while one (Cu cleaner 1 tail A) showed AGP (Figure 20-2) depending on the criterion applied. The unassessed metal leaching capacity, combined with the uncertainty regarding the full-scale production geochemical composition of the tailings despite the ability to divert pyrite rich tailings to a dedicated storage facility, may impact the classification of the tailings as inert or potentially acid generating and this should be studied further as the project develops.

Both supernatant surface water and entrained tailings solution from the tailings facility will be pumped back to the processing plant (Section 18.4.1). Any excess water from the TSF not recirculated to the plant may require treatment before discharge due to the presence of potentially harmful compounds if the plan to divert pyrite to the pyrite TSF is not completely effective. Therefore, the ongoing metallurgical testwork needs to prioritise management of pyrite in the processing and the implementation of a closed water circuit or other water management measures is recommended, considering the project's positive net precipitation environment.

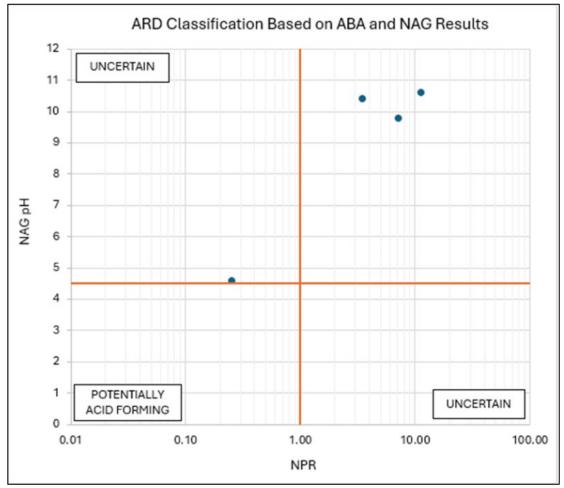


Figure 20-2: ARD classification based on NPR and NAG Results for tailings samples

Recommendations

It is recommended that, during the PFS, Lara performs a comprehensive static geochemical testwork program on stockpiles, waste rock and tailings material to characterise acid rock drainage and metal leaching potential, in accordance with the updated technical guideline NBR 10004:2024. There may also be a need for a kinetic test work programme in parallel. Consequently, this geochemical data should inform the development of the contact water management plan, treatment requirements and discharge management. It may also be necessary to plan mixing zone studies to determine potential impacts to downstream users and receiving waters ecosystem.

20.3.3 Potential Impacts for Downstream Water Users

Although the project has not yet identified the downstream water users, this will be done during the EIA process being conducted by CLAM. Based on an understanding of the project, the following potential surface water impacts may occur for downstream users:

- Changes in surface water flow due to construction of the river diversion and construction and operation of project infrastructure.
- Changes in surface water quality from discharges from the site (if any).
- Modifications to the hydrodynamic equilibrium of the river and downstream physical changes in the river channel, including changes in the deposition/resuspension spots.
- Increase in turbidity and remobilization of constituents present in the sediments that may cause changes in the river's water physical-chemical profile for an unknown period of time.

In the next stages of studies towards Prefeasibility Study, the project should advance its site-wide water balance and water management plan to determine how contact and non-contact water streams will be managed. As the downstream receiving waters are part of PARNA's buffer zone, a more stringent and costly treatment system in accordance with CONAMA 357/2005 surface water quality standards may be required. The EIA process will characterize the project's impacts and determine the required controls and mitigations to be implemented prior to the project's commencement.

Furthermore, dam breach analysis for tailings and water dams must be defined to confirm the extent of the downstream self-rescue zone for these facilities and whether anyone is currently located within this zone. If people are identified in the proposed self-rescue zone, a resettlement process will be required.

20.3.4 Decarbonisation

Decarbonisation is the reduction of carbon dioxide (CO₂) emissions (and other contributing greenhouse gases (GHG) such as methane and nitrous oxide) through the use of low-emission technology, achieving a lower output of GHG into the atmosphere. To meet expected national and global expectations regarding GHG emissions, new projects will need to show how their designs have considered decarbonisation of the construction and operations processes. Best available technology and methodologies for decarbonisation are advancing rapidly.

Brazil has committed to reducing net greenhouse gas emissions by 59-67% by 2035, compared with 2005 levels, and a long-term objective of carbon neutrality by 2050. A national cap-and-trade emissions trading scheme (ETS) is expected to become operational in the next five to six years to support these objectives. The ETS will impose compliance obligations on entities, including mining operations, emitting more than 25,000 tCO₂e per year, with reporting obligations applying to those emitting more than 10,000 tCO₂e per year.

Three categories of emissions require assessment and strategies for reduction:

 Scope 1: direct emissions by the Company from processes on-site and activities controlled by the Company; for example, fuel usage of vehicles and generators along with other sources of emissions source as explosives.

- Scope 2: indirect emissions required for the operation for example electricity or heat generation purchased from the grid.
- Scope 3: all other emissions related to the Company's activities, services and products
 within the entire supply chain; such as downstream (customers, sub-contractors),
 upstream (equipment providers and manufacturers). These are harder to quantify, but
 these can be further investigated during the feasibility study by requesting equipment
 suppliers to provide GHG emission information as part of their tender processes.

Mining activities consume significant quantities of fossil-fuels for transport, processing and power. In Brazil, due to the dominance of hydroelectric power, there is a lower reliance on fossil fuels from the grid compared to most countries globally. This allows the project to have a low carbon footprint. If electrification of mining and other mobile equipment is considered, the carbon footprint can be lowered still further.

As with the actions on reducing environmental and social impacts, there is a clear mitigation hierarchy as to how to action change, as stated below:

- Avoid: this is the highest priority and is considered the best strategy.
- Mitigate: if an impact cannot be avoided, reduce the impact through mitigation strategies.
- Compensate: if an impact cannot be avoided or mitigated to the point of being negligible, the 'last resort' strategy is compensating or offsetting for the impact.

During the next phase of project development, Lara will consider potential opportunities for decarbonising the project. The options will have capital and operating cost implications, which should be considered in more detail as part of the PFS.

20.4 Mine Closure Concepts

Mine reclamation and closure requirements in Brazil are regulated under Decree 10,965 from February 2022 and Resolution ANM 68 from April 2021. The legislation requires assets within a mining concession to have a mine closure plan (*Plano de Fechamento da Mina*, PFM) that is updated every five years or in the PAE updates, whichever occurs first. For projects with tailings facilities, the PFM must include a plan for decommissioning of the dam, or other technical solution aimed at reducing the Associated Potential Damage from the facility. If it is not possible to decommission the dam, the PFM must provide for its monitoring in accordance with legislation. There is no requirement for reclamation bonds to be posted.

Lara's draft 2025 PAE document does not describe the closure vision and concepts in detail, however, it states the principles that will guide the closure of the project, as required by Brazilian legislation and aligned with good practice in the mining industry. Closure will be planned from the project planning phase, with the aim of reducing risks, costs, and impacts, ensuring environmental rehabilitation and the safe handover of the area for future uses.

The main concepts adopted are:

- integration of closure into project planning and operations;
- environmental recovery with reintegration into the local landscape;
- physical, chemical, and biological stability of impacted areas;

- decommissioning of structures based on cost-effective and safe solutions; and
- preliminary estimation of costs.

The Work Plan of CLAM includes the development of a Conceptual Mine Closure Plan, covering the demobilization and disposal of facilities and equipment, including a schedule for periodic reviews of the proposed activities and an indicative future use of the area after the end of mining operations. This closure plan is due to be completed in March 2026.

According to the Lara draft 2025 PAE the estimated closure cost for the project was BRL 137.2M (approximately USD 25M). This cost excludes the possibility of repurposing certain structures for future uses, in line with common practice recommended by international standards. SRK has reviewed the closure cost in light of the base case TSF solution presented in this PEA document; the estimated closure cost is now USD 18.3M.

The cost will be reviewed and revised following completion of the Conceptual Mine Closure Plan in early 2026. The plan should also include a risk assessment to define potential issues that should be addressed through project designs generated for any future Prefeasibility Study and information gaps that can be filled to increase confidence in closure outcomes and cost estimate.

Specific areas of focus should include management of geochemical risks from stockpiles and mine waste facilities and long-term water management, as these aspects have the highest potential to materially affect the design of appropriate closure solutions and associated costs. Post-closure water management strategies will also need to consider future climate change scenarios, as referenced in Section 5.4.3.

20.5 Conclusions and Recommendations

Lara is progressing ESG aspects of the project, including commissioning an EIA process for the Project in 2025. As the EIA process progresses and builds a comprehensive understanding of the environmental and social context of the project, it will be important to maintain a strong link between project development and Environmental, social and governance (ESG) workstreams so that ESG information can be effectively and timeously embedded into technical decision making. Early and effective integration of these workstreams will result in more sustainable outcomes for the project and will likely improve overall permitting timeframes and outcomes.

A summary of key issues and risks for the Planalto Project, and recommended management solutions are described below.

- The approvals roadmap for the project reflects statutory timeframes. Delays to the planned schedule could occur if material changes are made to the project design during or following the EIA process, or if additional information is requested by regulators or other stakeholders.
- Project infrastructure, such as waste rock dumps and tailings facilities are located within Lara's current Exploration Licence areas for the base case options presented. However, some alternative and additional options for tailings storage are under consideration in areas which are partly or wholly outside Lara's Exploration Licence areas. Land access strategy for the project requires definition by Lara as agreements and court processes can take extensive timeframes.

- The current layout of the project extends across legal reserves and Permanent Preservation Areas. Where legal reserves cannot be avoided, Lara should commence the process of relocating all required legal reserves as this requires a specific authorization process and final approval from the environmental regulators. Lara should also determine the approach and timeframe for permitting development with Permanent Preservation Areas. There remains the potential for environmental regulators to request financial compensation as part of the final conditions of approval.
- Preliminary geochemistry testing results show a variety of results regarding acid rock drainage potential and further tests are required in accordance with international good practices, which is now referenced in Brazilian technical standard NBR 10.004:2024 guidelines along with metal leaching evaluation. This geochemical data should inform the development of the contact water management plan, treatment requirements (if necessary) and discharge management (if any).
- The project has the potential to impact surrounding water resources and downstream receptors; however, specific impacts and receptors have not yet been identified for the proposed project. The project needs to advance its water management plan, mainly to determine if any effluent discharge will occur and how this will be managed to avoid or minimize impacts on people and the environment. The downstream receiving watercourses are part of PARNA's buffer zone, which may require from the project a more costly treatment system in accordance with CONAMA 357/2005 surface water quality standards.
- The project needs to advance human presence mapping and the hypothetical dam failures studies for both TSFs and water reservoir, and define downstream zones for each facility (e.g. self-rescue). In case any community is identified within the self-rescue zones of any of those facilities, a resettlement plan may be required.
- It is expected that the EIA will characterize the pit dewatering impacts over the surrounding streams and natural springs. As the project is located in an area upstream of the PARNA's park buffer zone, any negative impact caused by pit dewatering will require mitigation strategies.
- The project has not yet established the expected carbon emissions from project activities and opportunities for emission reductions through design or operational changes. This should be considered in subsequent phases of project development as it may have capital cost implications.
- A preliminary closure cost of USD 18.3M has been established; however, the cost will be
 reviewed and revised following completion of the Conceptual Mine Closure Plan in early
 2026. There is a risk the preliminary closure cost will increase due to changes to the project
 layout (location of tailings facility), management of geochemical risks from stockpiles and
 mine waste facilities, and long-term water management.

ITEM 21. CAPITAL AND OPERATING COSTS

21.1 Project Capital Expenditure Estimates

Estimates for capital expenditure are based on the PEA study level definitions and technical inputs presented in preceding sections of this report and resulting costs are to an accuracy of ±50/-30% and the level of project definition is considered to be at <2% of engineering work completed with only preliminary locations, configurations and processes established. The capital cost estimate summary is presented in Table 21-1.

Table 21-1: Project Capital Expenditure Estimate Summary (+50/-30% accuracy)

Description	Capital Expenditure (USDM)	Notes
Direct Costs		
Mine	28.5	Pre-stripping cost estimate
Processing Plant	238.5	Factored estimate from equipment list. Includes WTP.
Tailings Management	13.1	Option 2: slurry and paste tailings.
Water Management	15.0	Water supply & Management, Diversion,
Infrastructure	28.3	Earthworks, buildings, utilities, services
Power Supply	20.6	138kV grid connection
Indirect Costs		
Construction Support	29.5	10% of Direct Costs (excl mine and power supply)
EPCM	47.3	15% of Direct Costs (excl mine)
Owner's Costs	33.7	8% on Direct and Indirect Costs
Contingency	90.9	Based on 20% of above Direct and Indirect Costs
Total Cost	545.5	

21.1.1 Basis of Estimate

Project Wide

Direct costs include equipment and materials, together with construction and installation costs and contractor indirect costs, preliminary and general costs (P&G). Direct costs are either estimated based the technical description and generated from a number of sources including cost indices, project specific pricing, historical quotes, benchmarks and analogies (see Table 21-2 for the summary) or provided by Lara's in-country consultants, reviewed by SRK and are considered reasonable for inclusion in the PEA subject to comments and recommendations.

Indirect costs have been applied at a project level as a percentage of the direct costs including:

- Engineering, procurement, and construction management costs at 15%.
- Provision of construction support, services and facilities (construction offices, cranes, scaffold, construction power and water, etc) at 10%.

SRK notes that some plant specific indirect costs are included in the Processing Plant direct costs (freight, vendor representation, spares and first fill), see Table 21-2.

Owner's costs are applied at a project level as a percentage (9%) of the direct and indirect costs. Contingency is applied as percentage of direct and indirects at 20% and is an allowance to provide for costs which cannot be estimated at PEA stage due to undefined information, but are expected to occur. Sustaining capital and closure costs are included in the TEM.

Table 21-2: Basis of Direct Cost Estimate (Project excluding Plant)

Area	Basis / Source
Mine	Contractor rate and haulage assessment and adjustment for haulage distance.
Processing Plant	Estimated by SRK after ONIX Engenharia; see Table 21-3
Tailings Management	Estimated by SRK for the selected base-case option
Water Management	ALB Engenharia costs with review and comment by SRK
Infrastructure	See Table 18-8
Power Supply	See Table 18-10

Process Plant

The estimate is based on the Consensum / ONIX flowsheet and equipment list to which a water treatment plant and the pyrite tailings thickener together with allowances for a plant wide control system have been added, as described in Item 17.

Table 21-3: Basis of Processing Plant Cost

Item	Basis / Source
Flowsheet	Blue Coast metallurgical testwork
Mass Balance	Consensum USIM PAC simulation
Equipment Selection and Pricing	Vendor quotations
Balance of Plant	SRK database and similar projects
Installation	SRK database and similar projects

21.2 Sustaining Capital Expenditure

As all mining is assumed to be undertaken by a contractor, no equipment replacement will be required over the life of mine. Whilst typically all plant maintenance costs are captured under operating costs, an allowance for sustaining capital of 2.5% per annum of direct plant capital was included, amounting to USD 5M per annum.

A closure cost of USD 18.3M has been allowed for (plus a 20% contingency), with USD 3.3M related to the TSF, as per Table 18-6. SRK notes that the closure allowance in the PAE was higher, as it was related to a different TSF scenario.

SRK Consulting (UK) Limited Planalto NI 43-101 – Main Report

Table 21-4: Summary of LoM Capital Expenditure

Capital Expenditure	Units	Total	Yr -2	Yr -1	Yr 1	Yr 2	Yr 3	Yr 4	Yr 5	Yr 6	Yr 7	Yr 8
Project	(USDM)	455	162	292	-	-	-	-	-	-	-	-
Mining - pre-strip	(USDM)	29	-	29	-	-	-	-	-	-	-	-
Processing Plant	(USDM)	239	95	143	-	-	-	-	-	-	-	-
Tailing Management Facility	(USDM)	13	-	13	-	-	-	-	-	-	-	-
Water Management	(USDM)	15	6	9	-	-	-	-	-	-	-	-
On-Site Infrastructure	(USDM)	28	11	17	-	-	-	-	-	-	-	-
Power Supply	(USDM)	21	8	12	-	-	-	-	-	-	-	-
Construction Support	(USDM)	29	11	18	-	-	-	-	-	-	-	-
EPCM	(USDM)	47	18	29	-	-	-	-	-	-	-	-
Owners Costs	(USDM)	34	12	22	-	-	-	-	-	-	-	-
Sustaining	(USDM)	166	-	-	5	5	5	5	21	5	5	5
Processing Plant	(USDM)	86	-	-	5	5	5	5	5	5	5	5
Tailings dam	(USDM)	62	-	-	-	-	-	-	16	-	-	-
Closure	(USDM)	18	-	-	-	-	-	-	-	-	-	-
Contingency	(USDM)	95	32	58	-	-	-	-	-	-	-	-
Total Capital Expenditure	(USDM)	716	195	351	5	5	5	5	21	5	5	5
Capital Expenditure	Units	Yr 9	Yr 10	Yr 11	Yr 12	Yr 13	Yr 14	Yr 15	Yr 16	Yr 17	Yr 18	Yr 19
Project	(USDM)	-	-	-	-	-	-	-	-	-	-	-
Mining - pre-strip	(USDM)	_						_		_	_	_
			-	-	-	-	-	_	-	_		
Processing Plant	(USDM)	-	-	-	-	-	-	-	-	-	-	-
Processing Plant Tailing Management Facility	(USDM) (USDM)	-	- - -	-	- - -	- - -	- - -	-	- - -	-	-	-
_		- - -	- - -	- - -	- - -	- - -	-	- - -	- - -	-	- - -	-
Tailing Management Facility	(USDM)	- - -	- - -	- - - -	- - -	- - - -	- - - -	- - -	- - - -	- - -	- - -	- - -
Tailing Management Facility Water Management	(USDM) (USDM)	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -		- - - -	- - - -
Tailing Management Facility Water Management On-Site Infrastructure	(USDM) (USDM) (USDM)	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	- - - -	- - - - -	-	- - - -	- - - -
Tailing Management Facility Water Management On-Site Infrastructure Power Supply	(USDM) (USDM) (USDM) (USDM)	- - - - -	- - - - - -	- - - - - -	-	-	- - - - -	-	- - - - - -	- - - - -	- - - - -	- - - - -
Tailing Management Facility Water Management On-Site Infrastructure Power Supply Construction Support	(USDM) (USDM) (USDM) (USDM) (USDM)	- - - - - -	- - - - - -	-	-	-	-	-	-	-	- - - - -	- - - - -
Tailing Management Facility Water Management On-Site Infrastructure Power Supply Construction Support EPCM	(USDM) (USDM) (USDM) (USDM) (USDM) (USDM)	- - - - - - 5	- - - - - - - 21	- - - - - - - - 5	- - - - - - - - 5	- - - - - - - 19	- - - - - - - - 5	- - - - - - - 21	- - - - - - - 5	- - - - - - - 5	- - - - - - 5	- - - - - - 18
Tailing Management Facility Water Management On-Site Infrastructure Power Supply Construction Support EPCM Owners Costs	(USDM) (USDM) (USDM) (USDM) (USDM) (USDM) (USDM) (USDM)	- - - - - - 5	- - - - - - - 21	- - - - - - 5 5	- - - - - - 5 5	- - - - - - 19	- - - - - - 5 5	- - - - - - - 21	- - - - - - 5 5	- - - - - - - 5	- - - - - - 5	- - - - - - 18
Tailing Management Facility Water Management On-Site Infrastructure Power Supply Construction Support EPCM Owners Costs Sustaining	(USDM) (USDM) (USDM) (USDM) (USDM) (USDM) (USDM) (USDM) (USDM)									-		- - - - - - 18
Tailing Management Facility Water Management On-Site Infrastructure Power Supply Construction Support EPCM Owners Costs Sustaining Processing Plant	(USDM)		5			5	5	5		-		- - - - - 18 - 18
Tailing Management Facility Water Management On-Site Infrastructure Power Supply Construction Support EPCM Owners Costs Sustaining Processing Plant Tailings dam	(USDM)		5			5	5	5		-		-

21.3 Operating Cost Estimates

Operating costs have been estimated for the following categories by the consultants detailed below:

- Mining: Mineset Consultoria;
- Processing: ONIX Engenharia;
- Tailings: ALB Engenharia and SRK; and
- General & Administrative: Mineset Consultoria.

Mining is planned to be undertaken via contractor. Annual unit cost at a rate of USD 2.83/t based on current comparable contractor rates in Brazil, estimated at a haulage distance of 2,632 m, which SRK deems reasonable. Haulage costs were deemed to make up 56% of this number, and annual unit costs were hence fluctuated in line with average haulage distance. Lara's technical team cost consisting of 18 people plus RC drilling grade control costs of USD 0.27 /t are added to the mining unit rate for RoM costs .

Low grade material is stockpiled and fed towards the end of the mine life. A rehandle charge of USD 1/t has been allowed for.

Processing costs have been estimated by ONIX and amount to USD 7.66/t which is at the lower end of global operating costs in the experience of SRK, but reasonable taking into account the low cost of power in Brazil. The breakdown of plant operating costs is presented in Table 21-5, which shows power makes up 39% of plant costs, hence making the project economics sensitive to changes in power cost.

Table 21-5: Plant Operating Cost Breakdown

Item	Plant Cost (USD/t)	%
Labour	0.83	10.8
Power	3.00	39.2
Reagents (Flotation / others)	0.38	5.0
Laboratory	0.24	3.1
Media and Liners	1.66	21.7
Plant Maintenance Supplies	0.33	4.3
Plant Maintenance Services	0.36	4.7
Equipment rental	0.17	2.2
Other costs	0.68	8.9
Total	7.66	100.0

Tailings operating costs are based on the costs as presented in Table 18-6 for the PEA base case TSF Option 2:

- Stage 1, slurry tailings placement of 103.2 Mt (up to year 13 inclusive) at a unit cost of USD 0.10/t tailings.
- Stage 2, paste tailings placement of 42.6 Mt (from year 14 onwards) at a unit cost USD 0.20/t tailings.

For general and administrative, there is an allowance of USD 1.62/t RoM which is based on comparable costs from similar mines within Brazil and is detailed in Table 21-6Table 21-6.

Table 21-6: G&A Operating Cost BreakdownOperational	BRLM/year	USDM ¹⁾ /year	%
Labour	21.05	3.90	30%
General Manager	3.22	0.60	5%
ESG	10.65	1.97	15%
HR	15.37	2.85	22%
Supply Chain & Logistics	5.38	1.00	8%
Finance	12.21	2.26	17%
Operational Management	2.24	0.41	3%
Total	70.11	12.98	100%
Applied unit cost		USD1.62/t	

¹⁾ Note the lower exchange rate used in this conversion compared to the economic model, resulting in a more conservative USD/t estimate.

Summary LoM unit operating costs are presented in Table 21-7, and annual operating costs are presented in Table 21-8.

Table 21-7: LoM Unit Operating Costs

Area	Unit	Cost
Mining	(USD/t ex-pit)	3.04
Mining	(USD/t processed)	8.34
Processing	(USD/t processed)	7.66
Tailings	(USD/t processed)	0.13
G&A	(USD/t processed)	1.62
Total	(USD/t processed)	17.75

SRK Consulting (UK) Limited Planalto NI 43-101 – Main Report

Table 21-8: Summary of LoM Operating Costs

Operating Costs	Units	Total	Yr -2	Yr -1	Yr 1	Yr 2	Yr 3	Yr 4	Yr 5	Yr 6	Yr 7	Yr 8
Mine - Ore	(USDM)	448	-	2	17	21	21	23	23	26	27	29
Rehandling	(USDM)	13	-	-	-	-	-	-	-	-	-	-
Mine - Waste	(USDM)	738	-	-	27	28	13	15	31	37	33	32
Plant	(USDM)	1,101	-	-	57	61	61	61	61	61	61	61
Tailings dam operation	(USDM)	18	-	-	1	1	1	1	1	1	1	1
G&A	(USDM)	233	-	-	12	13	13	13	13	13	13	13
Total Operating Costs	(USDM)	2,550	-	2	115	124	109	113	130	138	136	136
Operating Costs	Units		Yr 9	Yr 10	Yr 11	Yr 12	Yr 13	Yr 14	Yr 15	Yr 16	Yr 17	Yr 18
Mine - Ore	(USDM)		29	27	30	32	31	32	31	31	14	-
Rehandling	(USDM)		-	-	-	-	-	-	-	1	5	8
Mine - Waste	(USDM)		47	72	90	88	79	45	42	48	9	-
Plant	(USDM)		61	61	61	61	61	61	61	61	61	63
Tailings dam operation	(USDM)		1	1	1	1	1	2	2	2	2	2
G&A	(USDM)		13	13	13	13	13	13	13	13	13	13
Total Operating Costs	(USDM)		151	174	195	195	185	152	149	155	104	86

ITEM 22. ECONOMIC ANALYSIS

22.1 Introduction

This PEA is preliminary in nature; it includes Inferred Mineral Resources that are considered too speculative geologically to have the economic considerations applied to them that would enable them to be categorized as Mineral Reserves. There is no certainty that the PEA will be realized. Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability.

A technical economic model has been developed on an annual basis to assess the economic potential of the Planalto project. The model is presented in USD in real 2025 money terms. All BRL costs are converted to USD at an exchange rate of 5.6 BRL to the USD. NPV is presented at a base discount rate of 8%, are post-tax and pre-finance.

Due to the preliminary nature of the cashflow analysis in this report, working capital and value added tax (VAT) movements have not been modelled.

Cash flows have been discounted to the start of construction using an end-year approach. Any cash flows, including cost of further studies, prior to the start of construction have been excluded from the analysis and are considered sunk. For taxation purposes, no opening balances have been taken into account.

22.2 Project Schedule and Production

A two-year construction period has been allowed for, with pre-stripping taking place in the second year of construction. Plant feed is 7.5 Mt in year one, with nominal plant feed of 8 Mtpa achieved from year 2. Low grade material is stockpiled and processed during the last three years of operations. Operations are planned for a total of 18 years, following the construction period.

A total of 144 Mt of mineralisation will be mined, inclusive of 13 Mt of low grade material, along with 266 Mt of waste, see Table 22-1.

Fixed plant recoveries have been applied of 90.9% for Cu and 51.1% for Au, reporting to a 28% Cu concentrate. Over the life of mine a total of 2.0 Mt of concentrate will be produced, containing 560 kt of copper and 111 koz of gold. Total tailings produced amount to 141.7 Mt, containing 0.04% Cu and 0.02 g/t Au. Figure 22-1 shows the annual mine production schedule and copper in concentrate produced.

Table 22-1: LoM Summary Production

Parameter	Units	Value
Production Rates		
Peak mining rate (ore+waste)	(Mtpa)	35.0
Peak processing	(Mtpa)	8.0
Mine Production		
Total mined	(Mt)	410
Waste	(Mt)	266
RoM	(Mt)	130
Low grade material	(Mt)	13.4
Strip ratio	$(t_{\text{waste}}/t_{\text{RoM}})$	1.9
Payable metal		
Copper	(kt)	540
Gold	(koz)	99.7

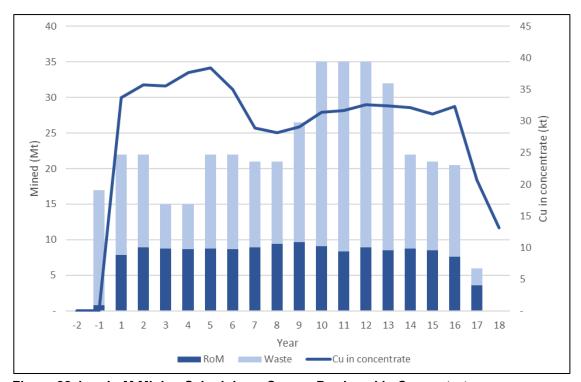


Figure 22-1: LoM Mining Schedule vs Copper Produced in Concentrate

22.3 Metal Prices and Commercial Terms

As per Item 19, the following commodity prices have been applied in the PEA:

- Copper: USD 9,502/t.
- Gold: USD 2,500/oz.

The following smelter and freight rates have been allowed for:

- payabilities of 96.6% for copper, and 90.0% for gold;
- treatment charge of USD 55/dmt of concentrate;
- refining charge of USD 0.055/lb of copper and USD 5.0/oz of gold; and
- freight of USD 185/wmt of concentrate (8% moisture).

22.4 Taxes and Royalties

As noted under Item 4.6, two types of royalties are applicable to the Project:

- Federal Government Royalty, CFEM at 2.0% for Cu and 1.5% for Au on NSR.
- Exploration licence: overall estimated at 1.125% of Cu and Au NSR, based on post-buy out rates. Buy out is deemed a sunk cost.

Companies located in the Amazon region may benefit from certain tax incentives. Superintendência do Desenvolvimento da Amazônia (SUDAM) is an administratively and financially independent federal government agency that oversees development in the Amazon region. The region includes the state of Pará in which the Project is located. Under the concession programme, companies can receive either partial or complete tax exemption on income taxes for Brazilian companies.

The tax exemption applies only to income from facilities operating in the designated region and consists of a reduction of 75% off the regular corporate income tax (25%). For the purposes of the PEA, the financial model factors in a reduction of the corporate income tax rate available under the SUDAM regime for the Project. The concession is available for an initial period of 10 years of operation. In addition, a social contribution of 9% is payable

The PEA assumes that the Planalto Project would be eligible for SUDAM tax exemption, but this can only be confirmed once an application has been submitted and approved.

22.5 Capital Expenditure and Operating Costs

Capital expenditure and operating costs are as described in Item 21.

22.6 Financial Model Results

Based on the inputs and assumptions in this report, key results of the cash flow model for the Planalto Project are estimated to be:

- post-tax Internal Rate of Return (IRR) of 21%;
- post-tax NPV of USD378.0M, at an 8% discount rate;
- post-tax net free cash flows of USD1,065.5M;
- copper accounting for 95% of net revenue, with gold contributing 5%;
- undiscounted pay-back (post tax) is achieved 3.5 years following start of concentrate production; and
- AISC of USD 2.69/lb payable copper (with gold revenue treated as by-product credit).

Further financial highlights of the Planalto PEA are presented in Table 22-2Table 22-2.

Table 22-2: Planalto PEA Financial Highlights

Item	Unit	Value
Total Site Costs	(USD/lb payable)	2.14
Government Royalties	(USD/lb payable)	0.08
Total Adjusted Operating Costs	(USD/lb payable)	2.54
All in Sustaining Costs*	(USD/lb payable)	2.69
Capital Expenditure		
Total Initial Capital Expenditure	(USD M)	546
Sustaining Capital Expenditure	(USD M)	148
Closure Costs	(USD M)	22
Life-of-Mine Total Capital	(USD M)	716
Financial Evaluation		
Average Annual Net Revenue	(USD M)	259
Average Annual Free Cashflow	(USD M)	91
After-tax NPV (8% discount)	(USD M)	378
After-tax IRR	(%)	21.0%
Initial CAPEX/NPV Ratio	(-)	1.44
Payback	(Years)	3.5

Certain non IFRS financial performance measures used (including AISC, Total Site Costs, Total Adjusted Operating Costs, Average Annual Net Revenue, Average Annual Free Cashflow, Initial Capital/NPV Ratio, and Payback), are not performance measures reported in accordance with IFRS. These performance measures do not have a standardized meaning under IFRS and are calculated according to the descriptions in Table 22-3. Annual cashflow is presented in Table 22-4 and Figure 22-2.

Table 22-3: Description of non-IFRS metrics used

Metric	Description
Total site costs	Mining, processing, tailings and G&A only
Total adjusted operating costs	Site based costs plus TC, RC, Freight, Royalty (Landowner and government) and Au credits
All in sustaining costs	Total adjusted operating costs plus sustaining capital and closure
Average annual net revenue	After TC, RC, freight, Royalty (Landowner and government)
Average annual free cashflow	Net Revenue minus (Total adjusted operating costs, depreciation, tax and total capital expenditure)
Initial capital/NPV ratio	Initial Capital expenditure /NPV at 8% discount rate
Payback	Time after construction cumulative, undiscounted, annual free cash flow is positive

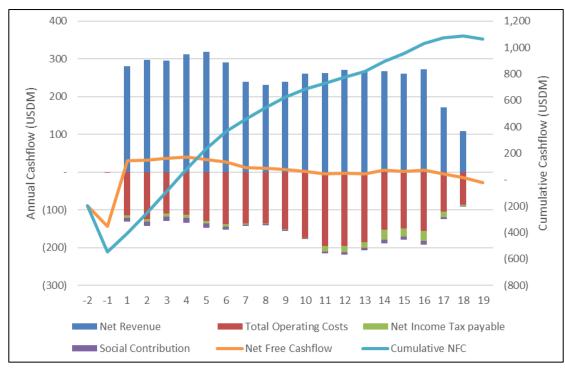


Figure 22-2: LoM Annual Cashflow

SRK Consulting (UK) Limited Planalto NI 43-101 – Main Report

Table 22-4: PEA Annual Cashflow Summary

Year No.	Units	Total	-2	-1	1	2	3	4	5	6	7	8
Physicals												
Plant Feed	(kt)	143,674	-	-	7,498	8,000	8,000	8,000	8,000	8,000	8,000	8,000
Cu grade	(%)	0.43%	-	-	0.49%	0.49%	0.49%	0.52%	0.53%	0.48%	0.40%	0.39%
Au grade	(g/t)	0.05	-	-	0.06	0.05	0.06	0.05	0.06	0.05	0.04	0.03
Concentrate Produced	(kt dry)	2,000	-	-	120.4	127.7	127.0	134.8	137.3	125.1	103.4	100.8
Cu contained	(kt)	560	-	-	33.7	35.8	35.6	37.7	38.4	35.0	28.9	28.2
Au contained	(koz)	111	-	-	6.9	7.2	7.4	7.2	7.5	7.1	5.4	4.2
Revenue												
Gross Revenue	(USDM)	5,378	-	-	324	344	342	362	369	337	277	268
TC/RC	(USDM)	(176)	-	-	(11)	(11)	(11)	(12)	(12)	(11)	(9)	(9)
Freight	(USDM)	(400)	-	-	(24)	(26)	(25)	(27)	(27)	(25)	(21)	(20)
Total NSR	(USDM)	4,802	-	-	289	307	306	323	329	301	247	239
CFEM	(USDM)	(95)	-	-	(6)	(6)	(6)	(6)	(7)	(6)	(5)	(5)
Landowner/others	(USDM)	(54)	-	-	(3)	(3)	(3)	(4)	(4)	(3)	(3)	(3)
Net Revenue	(USDM)	4,653	-	-	281	297	296	313	319	291	240	231
Operating Costs												
Mine	(USDM)	(1,199)	-	(2)	(45)	(49)	(34)	(38)	(55)	(63)	(61)	(61)
Plant	(USDM)	(1,101)	-	-	(57)	(61)	(61)	(61)	(61)	(61)	(61)	(61)
Tailings dam operation	(USDM)	(18)	-	-	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)
G&A	(USDM)	(233)	-	-	(12)	(13)	(13)	(13)	(13)	(13)	(13)	(13)
Total Operating Costs	(USDM)	(2,550)	-	(2)	(115)	(124)	(109)	(113)	(130)	(138)	(136)	(136)
EBITDA and Tax												
EBITDA	(USDM)	2,103	-	(2)	165	173	187	200	189	153	104	96
EBIT	(USDM)	1,387	-	(2)	109	116	130	143	116	96	47	39
Net Income Tax payable	(USDM)	(195)	-	-	(7)	(7)	(8)	(9)	(7)	(6)	(3)	(2)
Social Contribution	(USDM)	(127)	-	-	(10)	(10)	(12)	(13)	(10)	(9)	(4)	(3)
Cashflow from Operations	(USDM)	1,781	-	(2)	149	155	167	178	172	138	97	90
Capital Expenditure												
Project	(USDM)	(455)	(162)	(292)	-	-	-	-	-	-	-	-
Sustaining	(USDM)	(148)	-	-	(5)	(5)	(5)	(5)	(21)	(5)	(5)	(5)
Closure	(USDM)	(18)	-	-	-	-	-	-	-	-	-	-
Contingency	(USDM)	(95)	(32)	(58)	-	-	-	-	-	-	-	-
Total Capital Expenditure	(USDM)	(716)	(195)	(351)	(5)	(5)	(5)	(5)	(21)	(5)	(5)	(5)
Net Free Cashflow												
Post-Tax NFC	(USDM)	1,066	(195)	(352)	144	150	162	173	151	134	92	85
AISC	(USD/lb)	2.69	-	-	2.07	2.10	1.90	1.87	2.25	2.32	2.70	2.79

SRK Consulting (UK) Limited Planalto NI 43-101 – Main Report

Table 22-4: (continued)

Year No.	Units	9	10	11	12	13	14	15	16	17	18	19
Physicals												
Plant Feed	(kt)	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	7,997	8,179	-
Cu grade	(%)	0.40%	0.43%	0.44%	0.45%	0.45%	0.44%	0.43%	0.44%	0.28%	0.18%	_
Au grade	(g/t)	0.04	0.05	0.05	0.05	0.05	0.05	0.06	0.06	0.03	0.02	-
Concentrate Produced	(kt dry)	103.9	112.3	113.2	116.4	115.7	114.7	111.3	115.4	73.9	46.9	-
Cu contained	(kt)	29.1	31.5	31.7	32.6	32.4	32.1	31.2	32.3	20.7	13.1	-
Au contained	(koz)	4.8	6.1	6.2	6.2	6.3	6.3	7.3	7.9	4.3	2.8	-
Revenue												
Gross Revenue	(USDM)	277	302	304	312	311	308	302	314	199	127	-
TC/RC	(USDM)	(9)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(7)	(4)	-
Freight	(USDM)	(21)	(22)	(23)	(23)	(23)	(23)	(22)	(23)	(15)	(9)	-
Total NSR	(USDM)	247	269	272	279	278	275	270	280	178	113	-
CFEM	(USDM)	(5)	(5)	(5)	(6)	(5)	(5)	(5)	(6)	(4)	(2)	-
Landowner/others	(USDM)	(3)	(3)	(3)	(3)	(3)	(3)	(3)	(3)	(2)	(1)	-
Net Revenue	(USDM)	240	261	263	270	269	267	261	272	172	110	-
Operating Costs												
Mine	(USDM)	(76)	(99)	(120)	(120)	(110)	(77)	(73)	(80)	(28)	(8)	-
Plant	(USDM)	(61)	(61)	(61)	(61)	(61)	(61)	(61)	(61)	(61)	(63)	-
Tailings dam operation	(USDM)	(1)	(1)	(1)	(1)	(1)	(2)	(2)	(2)	(2)	(2)	-
G&A	(USDM)	(13)	(13)	(13)	(13)	(13)	(13)	(13)	(13)	(13)	(13)	-
Total Operating Costs	(USDM)	(151)	(174)	(195)	(195)	(185)	(152)	(149)	(155)	(104)	(86)	-
EBITDA and Tax												
EBITDA	(USDM)	89	87	68	75	84	114	112	116	69	24	-
EBIT	(USDM)	32	14	60	67	62	107	89	109	61	16	(22)
Net Income Tax payable	(USDM)	(2)	(1)	(15)	(17)	(16)	(27)	(22)	(27)	(15)	(4)	-
Social Contribution	(USDM)	(3)	(1)	(5)	(6)	(6)	(10)	(8)	(10)	(5)	(1)	-
Cashflow from Operations	(USDM)	84	85	47	52	63	78	82	79	48	18	-
Capital Expenditure												
Project	(USDM)	-	-	-	-	-	-	-	-	-	-	-
Sustaining	(USDM)	(5)	(21)	(5)	(5)	(19)	(5)	(21)	(5)	(5)	(5)	-
Closure	(USDM)	-	-	-	-	-	-	-	-	-	-	(18)
Contingency	(USDM)	-	-	-	-	-	-	-	-	-	-	(4)
Total Capital Expenditure	(USDM)	(5)	(21)	(5)	(5)	(19)	(5)	(21)	(5)	(5)	(5)	(22)
Net Free Cashflow												
Post-Tax NFC	(USDM)	79	64	43	47	44	73	61	75	43	14	(22)
Cumulative NFC	(USDM)	624	688	730	777	821	895	956	1,031	1,074	1,088	1,066
AISC	(USD/lb)	2.95	3.32	3.37	3.30	3.36	2.70	2.93	2.68	2.86	3.63	_

22.7 Sensitivity Analysis

Results of a single variable sensitivity analysis of overall commodity prices, operating costs and capital expenditure to NPV is presented graphically in Figure 22-3, with key project inputs flexed in steps 5%. As in most copper mining projects, the Planalto Project is most sensitive to changes in commodity prices, and in this case followed by operating costs. Similar NPV sensitivity to the key project inputs flexed from -25% to +25% in 5% steps is presented in tabular form at three different discount rates in Table 22-5.

An NPV (at 8%) and IRR sensitivity to specific sets of commodity prices (based on the 4 sets of prices as presented in Table 19-1) is presented in

Table 22-6.

A sensitivity to discount rate is presented in Table 22-7.

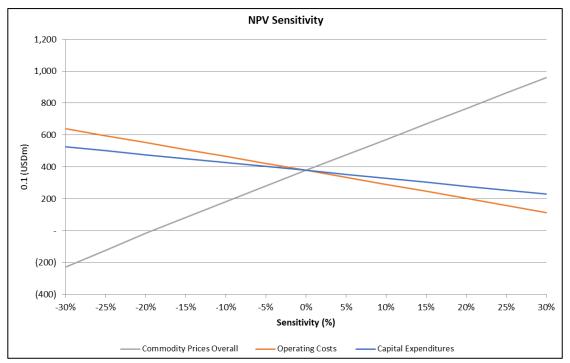


Figure 22-3: NPV (8%) Sensitivity to Key Project Inputs

Table 22-5: NPV Sensitivity to Key Project Inputs at 6%, 8% and 10% Discount Rates

Sensitivity	-25%	-20%	-15%	-10%	-5%	0%	5%	10%	15%	20%	25%
6% Discount Rate											
Commodity Prices	(96)	29	148	265	380	495	610	724	839	953	1,068
Operating Costs	756	704	652	599	547	495	443	390	337	284	231
Capital Expenditures	623	598	572	546	521	495	469	443	418	392	366
8% Discount Rate											
Commodity Prices	(122)	(17)	84	183	281	378	475	572	670	767	864
Operating Costs	596	552	509	465	422	378	335	291	247	203	158
Capital Expenditures	501	477	452	427	403	378	353	329	304	279	254
10% Discount Rate											
Commodity Prices	(144)	(54)	32	117	201	284	367	451	534	617	700
Operating Costs	468	431	394	357	321	284	247	210	173	136	98
Capital Expenditures	403	379	355	332	308	284	260	236	212	188	164

Table 22-6: NPV and IRR Sensitivity to Specific Commodity Prices

Copper Price	Gold Price	NPV 8% After Tax	IRR After Tax
(USD/t)	(USD/oz)	(USD M)	(%)
9,250	2,434	328	20%
9,500	2,500	378	21%
10,500	2,750	582	27%
11,000	4,000	724	30%

Table 22-7: NPV Sensitivity to Discount Rate

Discount Rate	NPV (USDM)
4%	642
6%	495
8% (PEA Base)	378
10%	284
12%	208

22.8 Conclusion

Based on the PEA economic analysis, the Planalto project has a NPV at 8% of USD 378M, an IRR of 21% and an undiscounted payback of 3.5 years following start of production. Over the 18 year mine life, the project generates USD 1,066M in cashflow. The AISC of USD 2.7/lb Cu places the project in the third quartile on the cost curve (as prepared by S&P Capital IQ for 2024). These metrics indicated that the project has good economic potential and warrants further study.

ITEM 23. ADJACENT PROPERTIES

The project is close to the major mining centres of Canaã dos Carajás, Parauapebas and Curionópolis and close to several operating mines such as the Sossego Copper (Vale S A), Pedra Branca Copper (BHP) and the SIID Iron Ore (Vale S A) and to the Cristalino copper deposit currently under development by Vale S A. (Figure 4-2). BHP has a copper flotation plant at Antas Norte some 15 km to the north of Planalto.

ITEM 24. OTHER RELEVANT DATA AND INFORMATION

No further information is considered relevant.

ITEM 25. INTERPRETATION AND CONCLUSIONS

25.1 Mineral Tenure, Surface Rights, Royalties and Agreements

The Planalto project comprises six contiguous Exploration Licences covering a total area of 4,212.25 ha. Lara has secured land access rights to five of these and is currently negotiating access to the recently optioned Atlantica ground in the east of the project area. Lara has assembled the land package through a series of acquisitions and transactions in recent years (resulting in four option deals referred to as BAIP, Tariana, Zaspir, and Atlantica).

The CFEM on concentrate sales from production are 1.5% NSR royalty on gold production and 2% NSR royalty on base metals i.e. copper production. The Private Landowner Royalty is equal to 50% of CFEM royalties (i.e. 0.75% on Au and 1% on Cu concentrate sales).

Royalties relating to Lara's (PML's) options agreements are:

BAIP Option

Lara to pay a 2% NSR royalty to BAIP on production. Lara retains the right to acquire
 50% of the royalty (i.e. 1%) for USD 2M until approval of the forthcoming PAE.

Tariana Option

- PML to pay a 1.25% NSR to Mineração Tariana Ltda on production with no buy-back rights.
- o If Tariana is not in production by 31 July 2027 then a penalty payment of USD 50,000 will be due and PML will then pay a monthly amount of USD 4,167 for the sooner of five years or when production starts. These monthly payment amounts can be recovered by PML from up to 50% of royalties payable thereafter.

Zaspir Option

 Payment of a 2% NSR royalty to Mineração Zaspir Ltda on any production. Lara retains the right to buy one half of the NSR royalty (i.e. 1%) for USD 250,000.

Atlantica Option

- Pay Atlantica do Brazil Mineração Ltda USD 0.06/lb of copper contained in Measured and Indicated Mineral Resources, defined in a NI 43-101 report to be completed by 31 December 2027.
- Pay Atlantica USD 0.06/lb of copper contained in incremental Measured and Indicated Mineral Resources added up to 31 December 2028.
- Pay Atlantica USD 0.08/lb of copper contained in addition Measured and Indicated Mineral Resources added after 31 December 2028.
- o Pay 2% NSR Royalty on any and all minerals extracted within the licence area.

25.2 Drilling and Analytical Data

Lara and Capstone conducted exploration subsequently, starting in 2016. This included infill soil sampling, IP surveys and geological mapping, petrographic studies. Limited drilling by Lara up to 2018 was followed by a more substantial drilling programme funded by Capstone. Some 25,838 m has been drilled in 85 diamond drillholes mostly over the Cupuzeiro and Homestead deposits with more limited coverage on Silica Cap.

Drilling, sampling, surveying, logging and assaying were undertaken using industry standard methods resulting in a dataset that is suitable to support Mineral Resources.

25.3 Geology and Mineral Resource

The Planalto mineralisation is hosted in mafic-intermediate volcanics located in a complex thrust fault zone at the southern edge of the Carajás Basin. The volcanics immediately north and east of the Planalto felsic granite are intensely affected by sodic and potassic alteration and invaded by veining and breccias with feldspar, carbonate, fluorite, magnetite and chalcopyrite mineralisation. Copper grades are typically 0.5% and there are low levels of gold associated with the copper; the project is expected to have a minor gold credit.

Mineralisation is focussed in stacked sub-parallel sheet-like structures that persist over hundreds of metres, the mineralisation is accompanied by pyrite further north in the Cupuzeiro deposit area. A block model of the deposit has been constructed using industry standard methods.

An open pit shell, using suitably elevated metal prices of USD 10,000/t for copper and USD 2,200/oz for gold, was used to limit the depth of the reported Mineral Resource which was also reported above a cut-off grade of 0.16% Cu equivalent.

The Mineral Resource, effective 15 October 2025, has been reported using the CIM Definition Standards. Data quality is generally of a good standard, sufficient to report the confidence categories used in this PEA. Indicated Mineral Resources are conferred where continuous mineralised bodies are demonstrated with drilling spaced at 60-100 m. Areas where continuity is less well established, or is based on wider drillhole spacing, are classified as Inferred.

The Planalto project Mineral Resource comprises:

- Indicated: 47.7 Mt at an average grade of 0.53% Cu and 0.06 g/t Au (0.56%CuEq)
- Inferred: 154 Mt at an average grade of 0.36% Cu and 0.04 g/t Au (0.38%CuEq)

Mineral Resources are not Mineral Reserves and they do not have demonstrated economic viability. There are no Mineral Reserves for the Planalto project at this time, further infill drilling will be required to convert more of the Mineral Resource from Inferred to Indicated classification and a prefeasibility study will need to be completed to achieve this.

25.4 Mining Plan

Open pit mining is envisaged with one large pit to excavate Homestead and Cupuzeiro deposit areas and a second smaller pit to mine the Silica Cap deposit. The planned mining equipment will be CAT395 excavators and 40 t trucks for ore mining on 5 m benches to achieve a production rate of 8 Mtpa with sufficient selectivity for the deposit geometry, expected to incur 7% dilution and 2% losses. Some 13.4 Mt of low grade material (between 0.18% and 0.21% Cu) will be stockpiled.

Pit designs have been completed with staged pushback positions using appropriate benchberm-ramp configuration and an inter-ramp pit slope angle in keeping with the expected geotechnical conditions which, below the 10-15 m thick weathered rock, are expected to be quite hard and competent. There are, however, some areas of low rock quality, probably relating to geological structures and the pit designs may ultimately change as these become better understood.

25.5 Metallurgical Testwork and Processing

Initial testwork was undertaken in 2020 using three samples from the Homestead deposit. This included mineralogy, bond work index determination, batch flotation tests and a locked cycle test on a sample grading 0.48% copper.

A second batch of testwork conducted in 2023 used three samples and a master composite from the Cupuzeiro deposit. This included mineralogy, bond work index determination, batch flotation tests, a locked cycle test (on a sample grading 0.46% copper) and two kinetic response tests.

An appropriately sized crusher is expected to operate with 70% utilisation allowing for maintenance. Crushed material is stored on a 2-3 day capacity stockpile and then fed at a constant rate to the SAG and ball mills. Fine material feeds into rougher flotation cells, the rougher product is reground to achieve finer sizing and improved liberation and separation of chalcopyrite in the subsequent cleaner flotation circuit which is then thickened, filter pressed and collected as concentrate with 8% moisture. Gangue, which is rejected from the flotation circuit, is thickened and discarded and stored as tailings.

Parts of the Cupuzeiro deposit RoM plant feed is expected to contain elevated pyrite; when this material is fed to the processing plant it will be necessary to divert the pyrite-rich cleaner-scavenger tailings to a dedicated pyrite tailings dam so that any subsequent interaction with the natural environment can be appropriately managed. A water treatment plant is included to achieve this.

An overall summary of this testwork used in this PEA is an estimated 90.8% recovery of copper to a concentrate with a grade of 28% Cu and a gold recovery of 51% to the concentrate with little potential for additional gravity recovery.

25.6 Tailings Management

The PEA envisages a TSF located SE of the mine site which is entirely within Lara's licence area. The TSF comprises two cells which would be utilised for conventional slurry tailings with storage for the first 13 years of tailings production. During Year 13 of operations, a new deep cone thickener would be installed close to the TSF. Tailings deposition would switch to paste (65-70% solids w/w) from Year 14 which would accommodate the remaining LoM tailings. This approach is utilised successfully for thickened tailings deposition at the nearby Sossego mine and is likely to be viewed favourably by regulatory authorities. Furthermore, there will be a small, dedicated storage facility for pyrite-rich tailings.

25.7 Surface Water Management

The tropical climate and the topographic situation of the project area mean that surface water management will be key to derisking mining operations and safeguarding the natural environment. A number of engineered features have been designed and costed at a conceptual level. A provisional water balance for the site, including the requirement for water in the processing plant has been presented in this PEA.

The PEA envisages numerous diversion channels to manage surface water run-off and water levels in the nearby creeks particularly during intense storm events. It also gives consideration to treating water that has been in contact with sulphide-bearing rock; a water treatment plant has been designed and costed at a conceptual level.

25.8 Infrastructure and Logistics

The PEA envisages a number of infrastructure requirements for the project including power supply, processing plant, tailings storage facility, waste rock dump, water management channels including a river diversion, process water supply pond, water treatment plant, a 4 km site access road and bridge, haul roads, RoM pad and low grade stockpile, plus miscellaneous site utilities.

There are a few options to connect with the national grid for power supply; all benefit from relative proximity to established power lines; which will require land access and agreements for connection and power supply.

Power in Brazil's national grid is 85% from renewable sources and is relatively affordable by international standards; the PEA assumes a power cost of USD 0.06/kWh.

This PEA assumes concentrate will be transported by road truck approximately 680 km to the port of Vila do Conde (Barcarena, Pará State) where it will be loaded onto ocean going vessels for shipping. A cost of USD 185/t concentrate is used in the PEA. Rail and river options are also possible but not currently favoured by Lara.

25.9 Environmental, Permitting and Social Considerations

Lara is progressing ESG aspects of the Planalto project, including commissioning an EIA process for the project in 2025. As the EIA process progresses and builds a comprehensive understanding of the environmental and social context of the project, it will be important to maintain a strong link between project development and ESG workstreams so that ESG information can be effectively and timeously embedded into technical decision making. Early and effective integration of these workstreams will result in more sustainable outcomes for the project and will likely improve overall permitting timeframes and outcomes.

25.10 Markets and Contracts

No contracts are yet in place for the project due to the PEA level of study. Commodity prices as assumed in the PEA are lower than consensus market forecast as available, and below current spot prices.

25.11 Cost Estimates

Capital expenditure and operating costs have been estimated for the Project in line with standard practise for a PEA level of study. Total project capital of USD 546M, sustaining capital of USD 148M and closure costs of USD 22M have been allowed for. Total site operating costs equate to USD 18/t plant feed.

25.12 Economic Analysis

Based on the PEA economic analysis, the Planalto project has a NPV at 8% of USD 378M, an IRR of 21% and an undiscounted payback of 3.5 years following start of production. Over the 18 year mine life, the project generates USD 1,066M in cashflow. The AISC of USD 2.7/lb Cu places the project in the third quartile on the cost curve (as prepared by S&P Capital IQ for 2024). These metrics indicated that the Planalto Project has good economic potential and warrants further study.

25.13 Risks

- The approvals roadmap for the project reflects statutory timeframes. Delays to the planned schedule could occur if material changes are made to the project design during or following the EIA process, or if additional information is requested by regulators or other stakeholders.
- The current layout of the project extends across legal reserves and Permanent Preservation Areas. While there are processes available to permit development within these areas, there remains the potential for environmental regulators to request financial compensation as part of the final conditions of approval.
- Project infrastructure, such as waste rock dumps and tailings facilities are located within
 the current Exploration Licence areas for the base case options presented. However, some
 alternative and additional options for tailings storage are under consideration in areas
 which are partly or wholly outside Lara's Exploration Licence areas. Agreements and court
 processes to acquire access may take extended timeframes.
- Geochemistry preliminary testing results show uncertainty regarding acid rock drainage potential (waste rock, tailings and stockpiles) further tests are required in accordance with international good practices, which is now referenced in NBR 10.004:2024 guidelines along with metal leaching evaluation. This geochemical data should inform the development of the contact water management plan, treatment requirements (if necessary) and discharge management (if any).
- The project has the potential to impact surrounding water resources and downstream receptors; however, specific impacts and receptors have not yet been identified for the proposed project. There is a risk that measures associated with water management and treatment may be more costly than currently anticipated in the financial model.
- The project has not yet developed the hypothetical dam failures studies for TSFs and water reservoirs, or extent of downstream zones for each facility (e.g. self-rescue). There is a risk that properties could be located within the self-rescue zones of these facilities, resulting in the need for resettlement processes that could extend project timeframes and costs.

- The project has not yet established the expected carbon emissions from project activities and opportunities for emission reductions through design or operational changes. The introduction of carbon reduction opportunities may have capital cost implications.
- There is a risk that the preliminary closure cost (USD 18.3M plus contingency) will increase
 due to changes to the project layout (location of tailings facility), management of
 geochemical risks from stockpiles and mine waste facilities, and long-term water
 management.

25.14 Opportunities

- There is an opportunity to significantly reduce footprint areas for TSF development by utilising paste thickened / CTD technologies on this project. Paste deposition also significantly reduces the volumes of excess contact water to be managed on the TSF. Closure of the facilities will be simplified, given that tailings material can be incorporated in the engineered cover system to form a water shedding surface. This approach was utilised successfully for thickened tailings deposition at the nearby Sossego mine and is likely to be viewed favourably by regulatory authorities.
- Further mineralogical and geochemical characterisation throughout the deposit to identify specific areas of elevated pyrite in the Cupuzeiro mineralisation may allow for selective mining and processing or enhanced blending options to improve management of tailings.
- Pyrite is currently being considered as a waste product to be managed. Further studies
 may indicate that pyrite produced may have value as a feedstock for sulphuric acid
 production supporting local fertiliser or other industrial uses.

ITEM 26. RECOMMENDATIONS

SRK's recommendations are summarised in Section 1.15 and are further detailed in the main sections of the PEA report. There are a number of key recommendations which will need to be undertaken in order to advance the Planalto Copper Project to a PFS.

Infill drilling will be required to convert a greater proportion of the deposit model to an Indicated or Measured Mineral Resource as part of the process required to allow a meaningful amount of Mineral Reserve once a positive PFS is completed. There is also an opportunity to add to the existing MRE through exploration drilling in the gaps and fringes of the main pit and south of the Silica Cap pit and onwards to the Atlantica area. This could equally serve as condemnation drilling for the base case tailings facility presented herein.

Lara has prepared a drilling budget to realise these opportunities which has been built up based on the costs associated with recent drilling programmes in terms of mobilisation and demobilisation fees, hire of equipment for drill pad preparation and water supply, unit drilling costs per metre including downhole survey and the associated costs of transporting, logging, sampling and storing the drill core. The budget includes assaying costs, labour costs and Lara's associated running costs.

The infill and exploration drilling described in Section 14.7 has a budget of USD 4.75 M and is scheduled to take 9 months using 4 diamond drill rigs.

Several technical and environmental-social studies and tasks will need to be completed in order to improve the level of confidence in other aspects of the project. Drilling will also be required to achieve many of these to an appropriate level of detail including 3 geotechnical drillholes, 4 hydrogeology drillholes and some geotechnical site investigation drilling for key surface water management structures.

Lara has also prepared a budget for the following studies which will be necessary to contribute to the PFS: metallurgical testwork, petrographic studies, acid rock characterisation of waste and tailings, tailings storage facility design, mineral resource update, geotechnical pit slope study, hydrogeological study, surface water management study and design, ongoing environmental studies.

The additional technical studies, including associated drilling have a budget of USD 1M.

Lara also has a budget of USD 0.35M to compile the work and author a PFS.

ITEM 27. REFERENCES

Acid Drainage Tests on Mining Waste / Low-Grade Ore for Stockpile Note, Lara Exploration 2025

Blue Coast report (Ref PJ5458)

Blue Coast testwork reports PJ5324 dated 31 March 2021 and PJ5458 8 November 2023, respectively.

Brazil - Renewable Energy Infrastructure

BHP Economic and Commodity Outlook (2025)

Consensum Engenharia PLA-PRO-REL-0001_CONSEMSUM_Final Report_en.pdf dated 9 April 2025.

Consensum report PLA-PRO-REL-0001_CONSEMSUM_Final Report_en.pdf was amended in the Onix Report 201-1000-000-EL-001 Rev 4

DRAFT Integrated Economic Development Plan (PAE) (PML, January 2025) (ONIX_R3_Data_2025_AUG)

DRAFT Integrated Economic Development Plan (PAE) (Planalto Mineração Limited, January 2025).

Estudo de Impacto Ambiental (Soluções Socioambientais Ltda, December 2021).

Focus on Critical Minerals: Copper in the new green and digital economy

Geotechnical logging database provided by Planalto Mineração

GIS database provided by Planalto Mineração

hc-insider-podcast/the-brazilian-power-market-with-adriana-waltrick (dated 27 August 2024)

Independent Technical Report on the Mineral Resources Estimate for the Planalto Project, Canaã dos Carajás/Pará, Brazil. GE21 Consultoria Mineral. dated September 5th, 2024 (Effective 3rd July, 2024).

Integrated Economic Development Plan (PAE) (Planalto Mineração, January 2025)

Lara Exploration Ltd NI43-101 Mineral Resource Report: Independent Technical Report on Mineral Resources Estimate for the Planalto Project, Canaã dos Carajás/Pará, Brazil, dated 03 July 2024. A link to this report is provided here.

NI43-101 Mineral Resource Report entitled: Independent Technical Report on Mineral Resources Estimate for the Planalto Project, Canaã dos Carajás/Pará, Brazil, (GE21 Consultoria Mineral, dated September 5th, 2024 (Effective 3rd July, 2024)) A link to this report is provided here.

ONIX Conceptual Engineering Report (ONIX-201-1000-000-RL-001 Rev 4)

ONIX Conceptual Engineering Report (201-1000-000-EL-001 Rev 3)

ONIX Engenharia e Consultoria Ltda. PLA-RL-1000-OX-000-001-R4_en.doc

SP Global: Major Copper Discoveries

Technical Opinion in Evaluation of the Term of Reference for Preparing EIA/RIMA (CLAM Meio Ambiente, undated).

Technical Report: Slope Stability Analysis – Planalto Copper Project. Canaã dos Carajás, Para, Brazil. GE21 Consultoria Mineral. July 2024.

Testwork report PJ5324, (Blue Coast, March 31st 2021)

Testwork report PJ5458, (Blue Coast, November 8th 2023)

The Future of Copper (IHS Markit, 14 July 2022)

Water Bypass of Cupuzeiro creek around Planalto pit (ALB Engineering, May 2025)

WCC-Copper-Demand-Forecasts-Report.pdf

Work Plan (CLAM Meio Ambiente, June 2025).

https://www.bhp.com/investors/economic-and-commodity-outlook/2025/08/economic-and-commodity-outlook

https://www.spglobal.com/market-intelligence/en/news-insights/research/major-copper-discoveries

https://cdn.ihsmarkit.com/www/pdf/0722/The-Future-of-Copper Full-Report 14July2022.pdf

ITEM 28. DATE AND SIGNATURE

The date of signature of the Technical Report is 14 November, 2025. On this date, the QPs signed their respective Certificates.

QUALIFIED PERSONS CERTIFICATES

- I, Martin Frank Pittuck, MSc., C.Eng, FGS, MIMMM (QMR) do hereby certify that:
- a) I am Corporate Consultant (Mining Geology) of SRK Consulting (UK) Ltd with an office at 5th Floor, Churchill House, Churchill Way, Cardiff CF10 2HH.
- b) This certificate applies to the technical report titled NI 43-101 Preliminary Economic Assessment of the Planalto Copper-Gold Project, Brazil with the Effective Date of 15 October 2025.
- c) I am a graduate with a Master of Science in Mineral Resources gained from Cardiff College, University of Wales in 1996 and I have practised my profession continuously since that time. Since graduating I have worked as a consultant at SRK on a wide range of mineral projects. I have undertaken many geological investigations, resource estimations, mine evaluation technical studies and due diligence reports. I am a member of the Institution of Materials Mining and Metallurgy (Membership Number 49186) through which I am recognised as Qualified for Minerals Reporting (QMR); I am a Fellow of the Geological Society and I am a Chartered Engineer;
- d) I have visited the Planalto site between 13 and 16 May 2025
- e) I am co-author of this report and have responsibility for the project descriptions, geology, data and Mineral Resource estimation and reporting and economic analysis described in Executive Summary sections 1,1 to 1.4, 1.6, 1.13 and 1.14 and the main Technical Report Sections 2-12, 14, 15, 19, 21-24. I have compiled conclusions, recommendations and references provided in Sections 25 to 27.
- f) I am independent of the issuer applying all of the tests in section 1.4 of NI 43-101.
- g) I have not had prior involvement with the property that is the subject of the Technical Report.
- h) I have read the definition of Qualified Person set out in National Instrument 43-101 (NI 43-101) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a Qualified Person for the purposes of NI 43-101; the sections of the Technical Report I am responsible for have been prepared in compliance with that instrument and form.
- i) As of the date of this certificate, to the best of my knowledge, information and belief, the sections of the Technical Report I am responsible for contain all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated this 14th November 2025

This signature has been scapped. The annual sequence permission to its use for this particular document. The annual sequence is held on file.

Martin Frank Pittuck, MSc., C.Eng, FGS, MIMMM (QMR)

Corporate Consultant (Mining Geology)

- I, Leonardo de Freitas Leite, MSc., FAusIMM (CP) do hereby certify that:
- a) I am Principal Consultant (Mining Engineering) of SRK Consulting (Brasil) with an office at Rua Gonçalves Dias, 89 10° Andar, Belo Horizonte, Minas Gerais, Brazil.
- b) This certificate applies to the technical report titled NI 43-101 Preliminary Economic Assessment of the Planalto Copper-Gold Project, Brazil with the Effective Date of 15 October 2025.
- c) I am a graduate with a Master of Science in Mineral Engineering gained from Federal University of Ouro Preto (UFOP) in 2004 and I have practised my profession continuously since that time. Since graduating I have worked for different consultant companies on a wide range of mineral projects. I have undertaken many mineral reserve estimations, mine evaluation technical studies and due diligence reports. I am a Fellow and Chartered Professional (CP) in Mining of the Australasian Institute of Mining and Metallurgy (AusIMM) Membership Number 312226.
- d) I have not visited the Planalto Site
- e) I am co-author of this report and have responsibility for the Mining Methods described in Executive Summary Section 1.7 and Section 16 of the Technical Report.
- f) I am independent of the issuer applying all of the tests in section 1.5 of NI 43-101.
- g) I have not had prior involvement with the property that is the subject of the Technical Report.
- h) I have read the definition of Qualified Person set out in National Instrument 43-101 (NI 43-101) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a Qualified Person for the purposes of NI 43-101; the sections of the Technical Report I am responsible for have been prepared in compliance with that instrument and form.
- i) As of the date of this certificate, to the best of my knowledge, information and belief, the sections of the Technical Report I am responsible for contain all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated this 14th November, 2025

Leonardo de Freitas Leite, MSc., FAusIMM (CP)

Principal Consultant (Mining Engineering)

- I, Liam MacNamara, PhD., B.Eng., ACSM, MIMMM do hereby certify that:
- I am Principal Consultant (Mineral Processing) of SRK Consulting (UK) Ltd with an office at 5th Floor, Churchill House, Churchill Way, Cardiff CF10 2HH.
- b) This certificate applies to the technical report titled NI 43-101 Preliminary Economic Assessment of the Planalto Copper-Gold Project, Brazil with the Effective Date of 15 October 2025.
- c) I am a graduate with a Batchelor of Engineering in Mineral Processing gained from Camborne School of Mines in 1989 and a Doctor of Philosophy in Mineral Processing in 1997 from the University of Nottingham and I have practised my profession continuously since that time. Since joining SRK in 2022 I have worked as a consultant on a wide range of mineral projects. I have undertaken many process plant audits reviews, processing evaluation technical studies and due diligence reports. I am a member of the Institution of Materials Mining and Metallurgy (Membership Number 681589);
- d) I have not visited the Planalto site.
- e) I am co-author of this report and have responsibility for the Metallurgical Testwork and Recovery Methods in Executive Summary Section 1.5 and Section 1.8 and Section 13 and Section 17 of the Technical Report and contributed to Section 21.1.
- f) I am independent of the issuer applying all of the tests in section 1.5 of NI 43-101.
- g) I have not had prior involvement with the property that is the subject of the Technical Report.
- h) I have read the definition of Qualified Person set out in National Instrument 43-101 (NI 43-101) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a Qualified Person for the purposes of NI 43-101; the sections of the Technical Report I am responsible for have been prepared in compliance with that instrument and form.
- i) As of the date of this certificate, to the best of my knowledge, information and belief, the sections of the Technical Report I am responsible for contain all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated this 14th November, 2025

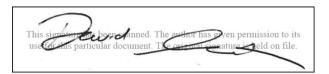
This signature has been swanted. The author has given permission to its use for this particular dollar the original signature is held on file.

Liam MacNamara, Ph.D., B.Eng (Hons), ACSM, MIMMM Principal Consultant (Mineral Processing)

I, Jamie Spiers CEng do hereby certify that:

- a) I am Principal Consultant (Tailings Engineering) of SRK Consulting (UK) Ltd with an office at 5th Floor, Churchill House, Churchill Way, Cardiff CF10 2HH.
- b) This certificate applies to the technical report titled NI 43-101 Preliminary Economic Assessment of the Planalto Copper-Gold Project, Brazil with the Effective Date of 15 October 2025.
- c) I am a graduate with a Master of Science in Environmental Technology from Imperial College London (2007). Since graduating I have worked as a consultant at SRK on a wide range of tailings projects. I have undertaken many geotechnical investigations, tailings storage facility design studies and due diligence reports. I am a member of the Institution of Materials Mining and Metallurgy (Membership Number 475353).
- d) I have not visited the Planalto site.
- e) I am co-author of this report and have responsibility for Tailings Storage Facility (Section 18.3) of the Technical Report and associated summary Section 1.9.
- f) I am independent of the issuer applying all of the tests in section 1.4 of NI 43-101.
- g) I have not had prior involvement with the property that is the subject of the Technical Report.
- h) I have read the definition of Qualified Person set out in National Instrument 43-101 (NI 43-101) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a Qualified Person for the purposes of NI 43-101; the sections of the Technical Report I am responsible for have been prepared in compliance with that instrument and form.
- i) As of the date of this certificate, to the best of my knowledge, information and belief, the sections of the Technical Report I am responsible for contain all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated this 14th November, 2025


This signature has been scanned. The author has given permission to its use for this particular decument. The original signature is held on file.

Jamie Spiers CEng

Principal Consultant (Tailings Engineering)

- I, David Robert Andrew Carruth, MSc,.DIC, C.Eng, MICE, CPEng, MEngNZ, do hereby certify that:
- a) I am Principal Consultant (Water Engineering) of SRK Consulting (UK) Ltd with an office at 5th Floor, Churchill House, Churchill Way, Cardiff CF10 2HH.
- b) This certificate applies to the technical report titled NI 43-101 Preliminary Economic Assessment of the Planalto Copper-Gold Project, Brazil with the Effective Date of 15 October 2025.
- I am a graduate with a Master of Science in Hydrology for Environmental Management gained from Imperial College London, in 2006 and I have practised my profession as a hydrologist and water resource engineer continuously since that time. Between 2010 and 2015, and from 2022 to present I have worked as a consultant at SRK on a wide range of mine water management related projects. Over my 23-year career, I have worked as a water engineer on a number of major water infrastructure projects in the UK, New Zealand and the Middle East in both consulting and client organisations including engagements as an independent consultant acting in an expert witness capacity. I have completed climate baseline and climate change assessments, hydrological baselines and impact assessments, hydraulic modelling and flood risk assessments, water resource estimations and supply assessments, dam break analyses and dam safety inspections and wide-ranging engineering design and construction supervision for water infrastructure and due diligence reports. I am a member of the Institution of Civil Engineers (Membership Number 60823268) and Engineering New Zealand (Membership No. 1031909), through which I am recognised as Qualified Person. I am a Chartered Engineer with Engineering New Zealand;
- d) I have not been to the Planalto site
- e) I provided specialist technical input to this report and have responsibility for the water management section described in Section 18.4 of the Technical Report and associated summary Section 1.11.
- f) I am independent of the issuer applying all of the tests in section 1.5 of NI 43-101.
- g) I have not had prior involvement with the property that is the subject of the Technical Report.
- h) I have read the definition of Qualified Person set out in National Instrument 43-101 (NI 43-101) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a Qualified Person for the purposes of NI 43-101; the sections of the Technical Report I am responsible for have been prepared in compliance with that instrument and form.
- i) As of the date of this certificate, to the best of my knowledge, information and belief, the sections of the Technical Report I am responsible for contain all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated this 14th November, 2025

David Robert Andrew Carruth, MSc,.DIC, C.Eng, MICE, CPEng, MEngNZ Principal Consultant (Water Engineering)

- I, Colin Michael Chapman, MSc., C.Eng, MIMMM (QMR) do hereby certify that:
- a) I am Principal Consultant (Mining Infrastructure & Logistics) of SRK Consulting (UK) Ltd with an office at 5th Floor, Churchill House, Churchill Way, Cardiff CF10 2HH.
- b) This certificate applies to the technical report titled NI 43-101 Preliminary Economic Assessment of the Planalto Copper-Gold Project, Brazil with the Effective Date of 15 October 2025.
- c) I am a member of the Institution of Materials Mining and Metallurgy (Membership 460270) through which I am a Chartered Engineer and recognised as Qualified for Minerals Reporting (QMR). I graduated with a Master's Degree in Applied Environmental Geology from Cardiff University, UK in 2007. Prior, I was involved in mining operations and exploration for 6 years. Since my degree, I've worked in consulting services and practiced this profession for 19 years, focusing on infrastructure, engineering, logistics, cost estimation, as related to civil infrastructure and mining projects. During this time, I have been directly involved in providing technical services technical review, design, audits, due diligence, for numerous operating mines and mining projects (base and precious metals, bulk commodities, critical minerals, specialist and industrial minerals).
- d) I have not visited the Planalto site.
- e) I am co-author of this report and have responsibility for the following sections and corresponding Executive summary sections (Section 1.8) within the Technical Report: Site Infrastructure (Section 18.1, 18.2 and 18.5), Power Supply (Section 18.6), and Logistics (Section 18.7).
- f) I am independent of the issuer applying all of the tests in section 1.4 of NI 43-101.
- g) I have not had prior involvement with the property that is the subject of the Technical Report.
- h) I have read the definition of Qualified Person set out in National Instrument 43-101 (NI 43-101) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a Qualified Person for the purposes of NI 43-101; the sections of the Technical Report I am responsible for have been prepared in compliance with that instrument and form.
- i) As of the date of this certificate, to the best of my knowledge, information and belief, the sections of the Technical Report I am responsible for contain all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated this 14th November, 2025

This signature has been scanned, the author has given permission to its use for this particular decement, the original signature is held on file.

Colin Chapman, MSc., C.Eng, MIMMM (QMR)

Principal Consultant (Mining Infrastructire & Logistics)

- I, Thiago Toussaint M Moreira, MSc., MAusIMM (CP) Env do hereby certify that:
- j) I am Principal Environmental Engineer of SRK Consulting (Brasil) with an office at Rua Gonçalves Dias, 89 10° Andar, Belo Horizonte, Minas Gerais, Brasil.
- k) This certificate applies to the technical report titled NI 43-101 Preliminary Economic Assessment of the Planalto Copper-Gold Project, Brazil with the Effective Date of 15 October 2025.
- I am graduate of University FUMEC, Brazil, in 2008 with a degree in Environmental Engineering and in 2022 with a Master of Science degree of Federal University of Minas Gerais in Water Resources. I have worked as a professional Environmental Engineer for over 17 years since my graduation. My relevant experience includes, environmental management and planning, environmental geochemistry, water management, mine closure and permitting.
 - I am a graduate Environmental Engineer of University FUMEC, Brazil, in 2008, with a Master of Science in Water Resources gained from Federal University of Minas Gerais (UFMG) in 2008 and I have practised my profession continuously since 2008. Since graduating I have worked for different consultancy companies on a wide range of mineral projects. My relevant experience includes, environmental management and planning, environmental geochemistry, water management, mine closure and permitting. I am a Chartered Professional (CP) in Environment of the Australasian Institute of Mining and Metallurgy (AusIMM) Membership Number 335799.
- m) I have not visited the Planalto site
- n) I am a co-author of the Technical Report, responsible for Section 20 and related portions of Sections 25 and 26 and the Executive Summary.
- o) I am independent of the issuer applying all of the tests in section 1.5 of NI 43-101.
- p) I have not had prior involvement with the property that is the subject of the Technical Report.
- q) I have read the definition of Qualified Person set out in National Instrument 43-101 (NI 43-101) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a Qualified Person for the purposes of NI 43-101; the sections of the Technical Report I am responsible for have been prepared in compliance with that instrument and form.
- r) As of the date of this certificate, to the best of my knowledge, information and belief, the sections of the Technical Report I am responsible for contain all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated this 14th November, 2025

Thiago Toussaint M Moreira, MSc., MAusIMM (CP)

Principal Consultant, (Geoenvironmental)

GLOSSARY, ABBREVIATIONS, UNITS

Unit (abbreviation)	Unit (detail)	Туре
μm	micrometre	Size fraction
m	meters	Distance
km	kilometres	Distance
km ²	Square kilometres	Area
masl	meters above mean sea level	Elevation/height
RL	Reduced Level	Height/depth- height above the datum surface.
t	Tonnes (metric)	Unit of weight
kt	thousand tonnes	Unit of weight
mt	million tonnes	Unit of weight
tpa	Tonnes per annum	Rate of extraction
ktpa	Thousand tonnes per annum	Rate of extraction
mRL	Metres relative level	
Mtpa	Million tonnes per annum	Rate of extraction
mV	Milli Volts	
%	Percentage	A number or ratio expressed as a fraction of 100
ppb	Parts per billion	A measure the concentration
ppm	Parts per million	A measure the concentration
g	grams	Unit of mass or weight
kg	kilograms	Unit of mass or weight
g/t	Grams per tonne	Proportion of metal in one tonne
0	degrees	Angle
°C	Degrees centigrade	Temperature

Abbreviation

3D Three-dimensional
ABA Acid-Base Accounting
AGP Acid generation potential
AISC All-in Sustaining Cost
ALB ALB Engenharia

ALS Lima ALS Laboratory, Lima, Peru

ALS Parauapebas ALS Laboratory, Parauapebas, Brazil

Anglo American Brasil Ltda
ANM National Mining Agency, Brazil
APP Permanent Preservation Areas

ARD Acid Rock Drainage

Atlantica do Brazil Mineração Ltda

Au Gold

BAIP Brasil Americas Investimentos e Participacoes

BAW sub-aerial beach

Blue Coast Metallurgy & Research, Vancouver, Canada

BRL Brazilian Real
BWi Bond Work index
CAD Canadian dollars
Capstone Capstone Copper

Capstone Capstone Copper Corp

CFEM Federal Government Royalties

CLAM CLAM Engenharia

CMD Disposable Materials Centre

CoG Cut-off grade

Consensum Engenharia
CRM Certified reference materials

Cu Copper

CWi Crushability index
DCT Deep Cone Thickener
DEM Digital Elevation Model
dmt Dry Metric Tonne

DUP declaration of public utility

EIA Environmental impact assessment
ESG Environmental, social and governance

ETS emissions trading scheme

FEL Front end loader
GHG Greenhouse gases
HCT Humidity cell tests

HPGR High pressure grinding rolls
HRT High Rate Thickening

HV High voltage

IFRS International Financial Reporting Standards
Intertek Parauapebas Intertek Laboratory, Parauapebas, PA, Brazil

IOCG iron-oxide copper gold
IRA Inter-ramp Angle
IRR Internal rate of return

Abbreviation	
IRR	Internal Rate of Return
ITAK	Instituto de Tecnologia August Kekulé Ltda
JKDWT	JK Drop-Weight Test
Lara	Lara Exploration Ltd
LC	Locked cycle
LI	Installation Licence
LO	Operating Licence
LoM	Life of Mine
LP	Preliminary Environmental License
MIBC	Methyl isobutyl carbinol
MRE	Mineral Resource Estimation
MTO	Material Take Off
NAF	non-acid forming
NAG	Net acid generating
NE NE	Northeast
NNP	Net Neutralisation Potential
NPR	Neutralisation Potential Ratio
NPV	Net present value
NSR	Net Smelter Return
NW	Northwest
OEM	Original Equipment Manufacturer
OK	Ordinary Kriging
ONIX	ONIX Engenharia e Consultoria Ltda.
OPEX	Operating expenses
OREAS	Ore Research & Exploration
PAE	Plano de Aproveitamento Econômico
PAE	Integrated Economic Development Plan
PAG	Potentially acid generating
PAR	Population at Risk
PARNA	Campos Ferruginosos National Park
PEA	Preliminary Economic Assessment
PFM	Plano de Fechamento da Mina
PFS	Preliminary Feasibility Study
Planalto	Planalto Copper Project
PML	Planalto Mineração Ltda
PMP	probable maximum precipitation
QP	Qualified Person
RC	Refining charge
RF	Revenue factor
RFP	Final Exploration Reports
RoM	Run-of-Mine
RoM	Run of mine
SABC	Semi-autogenous ball mill crusher
SAG	Semi-autogenous Grinding
SE	Southeast
SEMAS	State Secretariat for Environment and Sustainability
SEMAS	State Secretariat for Environment and Sustainability

Abbreviation	
SEMMA	Secretaria de Meio Ambiente
SGS Vespasiano	SGS Geosol Laboratory, Vespasiano-MG, Brazil
SMU	Selective mining unit
SRK	SRK Consulting (UK) Limited and SRK Consultores do Brasil Ltda
SSA	Solução Socioambientais
SUDAM	tax incentive (Superintendência do Desenvolvimento da Amazônia
TC	Treatment charge
TEU	twenty-foot equivalent containers
TSF	Tailings Storage Facility
UCS	Uni-axial Compressive Strength
USD	United States Dollar
VAT	Value added tax
wmt	Wet Metic Tonne